81 research outputs found

    A transdisciplinary and community-driven database to unravel subduction zone initiation

    Get PDF
    Subduction zones are pivotal for the recycling of Earth’s outer layer into its interior. However, the conditions under which new subduction zones initiate are enigmatic. Here, we constructed a transdisciplinary database featuring detailed analysis of more than a dozen documented subduction zone initiation events from the last hundred million years. Our initial findings reveal that horizontally forced subduction zone initiation is dominant over the last 100 Ma, and that most initiation events are proximal to pre-existing subduction zones. The SZI Database is expandable to facilitate access to the most current understanding of subduction zone initiation as research progresses, providing a community platform that establishes a common language to sharpen discussion across the Earth Science community

    Late Replicating Domains Are Highly Recombining in Females but Have Low Male Recombination Rates: Implications for Isochore Evolution

    Get PDF
    In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in analysis of GC content and rates of evolution

    Burden of childhood-onset arthritis

    Get PDF
    Juvenile arthritis comprises a variety of chronic inflammatory diseases causing erosive arthritis in children, often progressing to disability. These children experience functional impairment due to joint and back pain, heel pain, swelling of joints and morning stiffness, contractures, pain, and anterior uveitis leading to blindness. As children who have juvenile arthritis reach adulthood, they face possible continuing disease activity, medication-associated morbidity, and life-long disability and risk for emotional and social dysfunction. In this article we will review the burden of juvenile arthritis for the patient and society and focus on the following areas: patient disability; visual outcome; other medical complications; physical activity; impact on HRQOL; emotional impact; pain and coping; ambulatory visits, hospitalizations and mortality; economic impact; burden on caregivers; transition issues; educational occupational outcomes, and sexuality

    A Genome-Wide Analysis Reveals No Nuclear Dobzhansky-Muller Pairs of Determinants of Speciation between S. cerevisiae and S. paradoxus, but Suggests More Complex Incompatibilities

    Get PDF
    The Dobzhansky-Muller (D-M) model of speciation by genic incompatibility is widely accepted as the primary cause of interspecific postzygotic isolation. Since the introduction of this model, there have been theoretical and experimental data supporting the existence of such incompatibilities. However, speciation genes have been largely elusive, with only a handful of candidate genes identified in a few organisms. The Saccharomyces sensu stricto yeasts, which have small genomes and can mate interspecifically to produce sterile hybrids, are thus an ideal model for studying postzygotic isolation. Among them, only a single D-M pair, comprising a mitochondrially targeted product of a nuclear gene and a mitochondrially encoded locus, has been found. Thus far, no D-M pair of nuclear genes has been identified between any sensu stricto yeasts. We report here the first detailed genome-wide analysis of rare meiotic products from an otherwise sterile hybrid and show that no classic D-M pairs of speciation genes exist between the nuclear genomes of the closely related yeasts S. cerevisiae and S. paradoxus. Instead, our analyses suggest that more complex interactions, likely involving multiple loci having weak effects, may be responsible for their post-zygotic separation. The lack of a nuclear encoded classic D-M pair between these two yeasts, yet the existence of multiple loci that may each exert a small effect through complex interactions suggests that initial speciation events might not always be mediated by D-M pairs. An alternative explanation may be that the accumulation of polymorphisms leads to gamete inviability due to the activities of anti-recombination mechanisms and/or incompatibilities between the species' transcriptional and metabolic networks, with no single pair at least initially being responsible for the incompatibility. After such a speciation event, it is possible that one or more D-M pairs might subsequently arise following isolation

    Isolation and Characterization of a Metastatic Hybrid Cell Line Generated by ER Negative and ER Positive Breast Cancer Cells in Mouse Bone Marrow

    Get PDF
    BACKGROUND: The origin and the contribution of breast tumor heterogeneity to its progression are not clear. We investigated the effect of a growing orthotopic tumor formed by an aggressive estrogen receptor (ER)-negative breast cancer cell line on the metastatic potential of a less aggressive ER-positive breast cancer cell line for the elucidation of how the presence of heterogeneous cancer cells might affect each other's metastatic behavior. METHODS: ER positive ZR-75-1/GFP/puro cells, resistant to puromycin and non-tumorigenic/non-metastatic without exogenous estrogen supplementation, were injected intracardiacally into mice bearing growing orthotopic tumors, formed by ER negative MDA-MB-231/GFP/Neo cells resistant to G418. A variant cell line B6, containing both estrogen-dependent and -independent cells, were isolated from GFP expressing cells in the bone marrow and re-inoculated in nude mice to generate an estrogen-independent cell line B6TC. RESULTS: The presence of ER negative orthotopic tumors resulted in bone metastasis of ZR-75-1 without estrogen supplementation. The newly established B6TC cell line was tumorigenic without estrogen supplementation and resistant to both puromycin and G418 suggesting its origin from the fusion of MDA-MB-231/GFP/Neo and ZR-75-1/GFP/puro in the mouse bone marrow. Compared to parental cells, B6TC cells were more metastatic to lung and bone after intracardiac inoculation. More significantly, B6TC mice also developed brain metastasis, which was not observed in the MDA-MB-231/GFP/Neo cell-inoculated mice. Low expression of ERα and CD24, and high expression of EMT-related markers such as Vimentin, CXCR4, and Integrin-β1 along with high CD44 and ALDH expression indicated stem cell-like characteristics of B6TC. Gene microarray analysis demonstrated a significantly different gene expression profile of B6TC in comparison to those of parental cell lines. CONCLUSIONS: Spontaneous generation of the novel hybrid cell line B6TC, in a metastatic site with stem cell-like properties and propensity to metastasize to brain, suggest that cell fusion can contribute to tumor heterogeneity

    Human Population Differentiation Is Strongly Correlated with Local Recombination Rate

    Get PDF
    Allele frequency differences across populations can provide valuable information both for studying population structure and for identifying loci that have been targets of natural selection. Here, we examine the relationship between recombination rate and population differentiation in humans by analyzing two uniformly-ascertained, whole-genome data sets. We find that population differentiation as assessed by inter-continental FST shows negative correlation with recombination rate, with FST reduced by 10% in the tenth of the genome with the highest recombination rate compared with the tenth of the genome with the lowest recombination rate (P≪10−12). This pattern cannot be explained by the mutagenic properties of recombination and instead must reflect the impact of selection in the last 100,000 years since human continental populations split. The correlation between recombination rate and FST has a qualitatively different relationship for FST between African and non-African populations and for FST between European and East Asian populations, suggesting varying levels or types of selection in different epochs of human history

    Wolbachia-Mediated Male Killing Is Associated with Defective Chromatin Remodeling

    Get PDF
    Male killing, induced by different bacterial taxa of maternally inherited microorganisms, resulting in highly distorted female-biased sex-ratios, is a common phenomenon among arthropods. Some strains of the endosymbiont bacteria Wolbachia have been shown to induce this phenotype in particular insect hosts. High altitude populations of Drosophila bifasciata infected with Wolbachia show selective male killing during embryonic development. However, since this was first reported, circa 60 years ago, the interaction between Wolbachia and its host has remained unclear. Herein we show that D. bifasciata male embryos display defective chromatin remodeling, improper chromatid segregation and chromosome bridging, as well as abnormal mitotic spindles and gradual loss of their centrosomes. These defects occur at different times in the early development of male embryos leading to death during early nuclear division cycles or large defective areas of the cellular blastoderm, culminating in abnormal embryos that die before eclosion. We propose that Wolbachia affects the development of male embryos by specifically targeting male chromatin remodeling and thus disturbing mitotic spindle assembly and chromosome behavior. These are the first observations that demonstrate fundamental aspects of the cytological mechanism of male killing and represent a solid base for further molecular studies of this phenomenon

    Health related quality of life measure in systemic pediatric rheumatic diseases and its translation to different languages: an international collaboration

    Get PDF
    Background: Rheumatic diseases in children are associated with significant morbidity and poor health-related quality of life (HRQOL). There is no health-related quality of life (HRQOL) scale available specifically for children with less common rheumatic diseases. These diseases share several features with systemic lupus erythematosus (SLE) such as their chronic episodic nature, multi-systemic involvement, and the need for immunosuppressive medications. HRQOL scale developed for pediatric SLE will likely be applicable to children with systemic inflammatory diseases.Findings: We adapted Simple Measure of Impact of Lupus Erythematosus in Youngsters (SMILEY (c)) to Simple Measure of Impact of Illness in Youngsters (SMILY (c)-Illness) and had it reviewed by pediatric rheumatologists for its appropriateness and cultural suitability. We tested SMILY (c)-Illness in patients with inflammatory rheumatic diseases and then translated it into 28 languages. Nineteen children (79% female, n= 15) and 17 parents participated. the mean age was 12 +/- 4 years, with median disease duration of 21 months (1-172 months). We translated SMILY (c)-Illness into the following 28 languages: Danish, Dutch, French (France), English (UK), German (Germany), German (Austria), German (Switzerland), Hebrew, Italian, Portuguese (Brazil), Slovene, Spanish (USA and Puerto Rico), Spanish (Spain), Spanish (Argentina), Spanish (Mexico), Spanish (Venezuela), Turkish, Afrikaans, Arabic (Saudi Arabia), Arabic (Egypt), Czech, Greek, Hindi, Hungarian, Japanese, Romanian, Serbian and Xhosa.Conclusion: SMILY (c)-Illness is a brief, easy to administer and score HRQOL scale for children with systemic rheumatic diseases. It is suitable for use across different age groups and literacy levels. SMILY (c)-Illness with its available translations may be used as useful adjuncts to clinical practice and research.Rutgers State Univ, Robert Wood Johnson Med Sch, New Brunswick, NJ 08903 USARutgers State Univ, Child Hlth Inst New Jersey, New Brunswick, NJ 08901 USAHosp Special Surg, New York, NY 10021 USAUniv Michigan, Ann Arbor, MI 48109 USARed Cross War Mem Childrens Hosp, Cape Town, South AfricaAin Shams Univ, Pediat Allergy Immunol & Rheumatol Unit, Cairo, EgyptAin Shams Univ, Pediat Rheumatol Pediat Allergy Immunol & Rheum, Cairo, EgyptKing Faisal Specialist Hosp & Res Ctr, Riyadh 11211, Saudi ArabiaCharles Univ Prague, Prague, Czech RepublicGen Univ Hosp, Prague, Czech RepublicUniv Hosp Motol, Dept Pediat, Prague, Czech RepublicAarhus Univ, Hosp Skejby, Aarhus, DenmarkRigshosp, Juliane Marie Ctr, DK-2100 Copenhagen, DenmarkUniv Med Ctr, Dept Pediat Immunol, Utrecht, NetherlandsWilhelmina Childrens Hosp, Utrecht, NetherlandsGreat Ormond St Hosp Sick Children, Children NHS Fdn Trust, Renal Unit, London, EnglandLyon Univ, Hosp Civils Lyon, Rheumatol & Dermatol Dept, Lyon, FranceMed Univ Innsbruck, A-6020 Innsbruck, AustriaPrim Univ Doz, Bregenz, AustriaHamburg Ctr Pediat & Adolescence Rheumatol, Hamburg, GermanyAsklepios Clin Sankt, Augustin, GermanyUniv Zurich, Childrens Hosp, Zurich, SwitzerlandAristotle Univ Thessaloniki, Pediat Immunol & Rheumatol Referral Ctr, GR-54006 Thessaloniki, GreeceIsrael Meir Hosp, Kefar Sava, IsraelSanjay Gandhi Postgrad Inst Med Sci, Lucknow, Uttar Pradesh, IndiaSemmelweis Univ, H-1085 Budapest, HungaryAnna Meyer Hosp, Florence, ItalyUniv Siena, Res Ctr System Autoimmune & Autoinflammatory Dis, I-53100 Siena, ItalyUniv Florence, Florence, ItalyOsped Pediat Bambino Gesu, IRCCS, Pediat Rheumatol Unit, Rome, ItalyUniv Genoa Pediat II Reumatol, Ist G Gaslini EULAR, Ctr Excellence Rheumatol, Genoa, ItalyUniv Cattolica Sacro Cuore, Inst Pediat, Rome, ItalyUniv Padua, Dept Pediat, Pediat Rheumatol Unit, Padua, ItalyYokohama City Univ, Sch Med, Yokohama, Kanagawa 232, JapanUniv Estadual Paulista, UNESP, Botucatu, SP, BrazilUniversidade Federal de São Paulo, Dept Pediat, São Paulo, BrazilUniv Estadual Campinas, Dept Med, Campinas, SP, BrazilUniv Fed Rio de Janeiro, Dept Pediat, Rio de Janeiro, BrazilUniv Estado do, Adolescent Hlth Care Unit, Div Pediat Rheumatol, Rio de Janeiro, BrazilUniv São Paulo, Fac Med, Childrens Inst, Dept Pediat,Pediat Rheumatol Unit, São Paulo, BrazilChildrens Inst, Pediat Rheumatol Unit, São Paulo, BrazilClin Pediat I, Cluj Napoca, RomaniaInst Rheumatol, Belgrade, SerbiaUniv Childrens Hosp, Univ Med Ctr Ljubljana, Ljubljana, SloveniaHead Rheumatol Hosp Pedro Elizalde, Buenos Aires, DF, ArgentinaHosp Gen Mexico City, Mexico City, DF, MexicoHosp Infantil Mexico Fed Gomez, Mexico City, DF, MexicoHosp San Juan Dios, Barcelona, SpainHosp Univ Valle Hebron, Barcelona, SpainMt Sinai Med Ctr, New York, NY 10029 USAMt Sinai Med Ctr, Miami Beach, FL 33140 USAComplejo Hosp Univ Ruiz & Paez, Bolivar, VenezuelaHacettepe Univ, Dept Pediat, Ankara, TurkeyIstanbul Univ, Cerrahpasa Med Sch, Istanbul, TurkeyFMF Arthrit Vasculitis & Orphan Dis Res Ctr, Inst Hlth Sci, Ankara, TurkeyUniv Calgary, Dept Pediat, Alberta Childrens Hosp, Res Inst, Calgary, AB T2N 1N4, CanadaUniversidade Federal de São Paulo, Dept Pediat, São Paulo, BrazilWeb of Scienc

    The Baker's Yeast Diploid Genome Is Remarkably Stable in Vegetative Growth and Meiosis

    Get PDF
    Accurate estimates of mutation rates provide critical information to analyze genome evolution and organism fitness. We used whole-genome DNA sequencing, pulse-field gel electrophoresis, and comparative genome hybridization to determine mutation rates in diploid vegetative and meiotic mutation accumulation lines of Saccharomyces cerevisiae. The vegetative lines underwent only mitotic divisions while the meiotic lines underwent a meiotic cycle every ∼20 vegetative divisions. Similar base substitution rates were estimated for both lines. Given our experimental design, these measures indicated that the meiotic mutation rate is within the range of being equal to zero to being 55-fold higher than the vegetative rate. Mutations detected in vegetative lines were all heterozygous while those in meiotic lines were homozygous. A quantitative analysis of intra-tetrad mating events in the meiotic lines showed that inter-spore mating is primarily responsible for rapidly fixing mutations to homozygosity as well as for removing mutations. We did not observe 1–2 nt insertion/deletion (in-del) mutations in any of the sequenced lines and only one structural variant in a non-telomeric location was found. However, a large number of structural variations in subtelomeric sequences were seen in both vegetative and meiotic lines that did not affect viability. Our results indicate that the diploid yeast nuclear genome is remarkably stable during the vegetative and meiotic cell cycles and support the hypothesis that peripheral regions of chromosomes are more dynamic than gene-rich central sections where structural rearrangements could be deleterious. This work also provides an improved estimate for the mutational load carried by diploid organisms

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore