1,371 research outputs found

    Are reintroductions an effective way of mitigating against plant extinctions? CEE review 07-008 (SR32)

    Get PDF
    Re-introductions are considered by some conservation practitioners to be a controversial management option for mitigating threatened plant declines. The use of translocations (including re-introductions) has been criticised for the lack of monitoring and central recording, inappropriateness of the action due to genetic considerations, a lack of knowledge of the demography of the donor populations and inadequate information on the habitat requirements of the species. Despite these arguably justified criticisms, re-introductions are growing in use as practitioners see no other option for meeting management plan targets. Re-introductions have been proposed as options for overcoming habitat loss, habitat fragmentation and reproductive isolation. An extension of this increasingly interventionist approach, often termed assisted colonisation, is being considered as a potential method for preventing extinctions due to climatic shifts too rapid to allow corresponding species‟ distribution changes. This review evaluates the effectiveness of re-introductions as a conservation tool by using the available evidence to determine in what context plant translocations have improved the status of threatened species

    The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks

    Get PDF
    Measurements at appropriate spatial and temporal scales are essential for understanding and monitoring spatially heterogeneous environments with complex and highly variable emission sources, such as in urban areas. However, the costs and complexity of conventional air quality measurement methods means that measurement networks are generally extremely sparse. In this paper we show that miniature, low-cost electrochemical gas sensors, traditionally used for sensing at parts-per-million (ppm) mixing ratios can, when suitably configured and operated, be used for parts-per-billion (ppb) level studies for gases relevant to urban air quality. Sensor nodes, in this case consisting of multiple individual electrochemical sensors, can be low-cost and highly portable, thus allowing the deployment of scalable high-density air quality sensor networks at fine spatial and temporal scales, and in both static and mobile configurations.This work was supported by EPSRC (grant number EP/E002102/1) and the Department for Transport

    Descriptive inference using large, unrepresentative nonprobability samples: An introduction for ecologists

    Get PDF
    \ua9 2023 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.Biodiversity monitoring usually involves drawing inferences about some variable of interest across a defined landscape from observations made at a sample of locations within that landscape. If the variable of interest differs between sampled and nonsampled locations, and no mitigating action is taken, then the sample is unrepresentative and inferences drawn from it will be biased. It is possible to adjust unrepresentative samples so that they more closely resemble the wider landscape in terms of “auxiliary variables.” A good auxiliary variable is a common cause of sample inclusion and the variable of interest, and if it explains an appreciable portion of the variance in both, then inferences drawn from the adjusted sample will be closer to the truth. We applied six types of survey sample adjustment—subsampling, quasirandomization, poststratification, superpopulation modeling, a “doubly robust” procedure, and multilevel regression and poststratification—to a simple two-part biodiversity monitoring problem. The first part was to estimate the mean occupancy of the plant Calluna vulgaris in Great Britain in two time periods (1987–1999 and 2010–2019); the second was to estimate the difference between the two (i.e., the trend). We estimated the means and trend using large, but (originally) unrepresentative, samples from a citizen science dataset. Compared with the unadjusted estimates, the means and trends estimated using most adjustment methods were more accurate, although standard uncertainty intervals generally did not cover the true values. Completely unbiased inference is not possible from an unrepresentative sample without knowing and having data on all relevant auxiliary variables. Adjustments can reduce the bias if auxiliary variables are available and selected carefully, but the potential for residual bias should be acknowledged and reported

    Co-opetition models for governing professional football

    Get PDF
    In recent years, models for co-creating value in a business-to-business context have often been examined with the aim of studying the strategies implemented by and among organisations for competitive and co-operative purposes. The traditional concepts of competition and co-operation between businesses have now evolved, both in terms of the sector in which the businesses operate and in terms of the type of goods they produce. Many researchers have, in recent times, investigated the determinants that can influence the way in which the model of co-opetition can be applied to the football world. Research interest lies in the particular features of what makes a good football. In this paper, the aim is to conduct an analysis of the rules governing the “football system”, while also looking at the determinants of the demand function within football entertainment. This entails applying to football match management the co-opetition model, a recognised model that combines competition and co-operation with the view of creating and distributing value. It can, therefore, be said that, for a spectator, watching sport is an experience of high suspense, and this suspense, in turn, depends upon the degree of uncertainty in the outcome. It follows that the rules ensuring that both these elements can be satisfied are a fertile ground for co-operation between clubs, as it is in the interest of all stakeholders to offer increasingly more attractive football, in comparison with other competing products. Our end purpose is to understand how co-opetition can be achieved within professional football

    Prior Mating Experience Modulates the Dispersal of Drosophila in Males More Than in Females

    Get PDF
    Cues from both an animal’s internal physiological state and its local environment may influence its decision to disperse. However, identifying and quantifying the causative factors underlying the initiation of dispersal is difficult in uncontrolled natural settings. In this study, we automatically monitored the movement of fruit flies and examined the influence of food availability, sex, and reproductive status on their dispersal between laboratory environments. In general, flies with mating experience behave as if they are hungrier than virgin flies, leaving at a greater rate when food is unavailable and staying longer when it is available. Males dispersed at a higher rate and were more active than females when food was unavailable, but tended to stay longer in environments containing food than did females. We found no significant relationship between weight and activity, suggesting the behavioral differences between males and females are caused by an intrinsic factor relating to the sex of a fly and not simply its body size. Finally, we observed a significant difference between the dispersal of the natural isolate used throughout this study and the widely-used laboratory strain, Canton-S, and show that the difference cannot be explained by allelic differences in the foraging gene

    How large should whales be?

    Get PDF
    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809
    corecore