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Abstract

Biodiversity monitoring usually involves drawing inferences about some vari-

able of interest across a defined landscape from observations made at a sample

of locations within that landscape. If the variable of interest differs between

sampled and nonsampled locations, and no mitigating action is taken, then

the sample is unrepresentative and inferences drawn from it will be biased. It

is possible to adjust unrepresentative samples so that they more closely resem-

ble the wider landscape in terms of “auxiliary variables.” A good auxiliary vari-

able is a common cause of sample inclusion and the variable of interest, and if

it explains an appreciable portion of the variance in both, then inferences

drawn from the adjusted sample will be closer to the truth. We applied six

types of survey sample adjustment—subsampling, quasirandomization,

poststratification, superpopulation modeling, a “doubly robust” procedure,

and multilevel regression and poststratification—to a simple two-part biodiver-

sity monitoring problem. The first part was to estimate the mean occupancy of

the plant Calluna vulgaris in Great Britain in two time periods (1987–1999 and

2010–2019); the second was to estimate the difference between the two

(i.e., the trend). We estimated the means and trend using large, but (originally)

unrepresentative, samples from a citizen science dataset. Compared with the

unadjusted estimates, the means and trends estimated using most adjustment

methods were more accurate, although standard uncertainty intervals gener-

ally did not cover the true values. Completely unbiased inference is not possi-

ble from an unrepresentative sample without knowing and having data on all

relevant auxiliary variables. Adjustments can reduce the bias if auxiliary vari-

ables are available and selected carefully, but the potential for residual bias

should be acknowledged and reported.
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INTRODUCTION

As the data revolution gathers pace, it is not surprising to
see “big data” being used to monitor biodiversity.
Examples include observations submitted to mobile
phone apps by amateur naturalists (Johnston et al., 2022)
and digitized specimens from museums and herbaria
(Nelson & Ellis, 2019). Such data become bigger still
when combined in data aggregators such as the Global
Biodiversity Information Facility (GBIF; https://www.
gbif.org/) or metadatabases such as PREDICTS (Hudson
et al., 2014). Unfortunately, quantity of data does not nec-
essarily imply quality of insight.

Monitoring biodiversity is typically a matter of
descriptive statistical inference. It is inferential in that
the goal is to infer something about a target population
from a sample of that population (Boyd, Powney, et al.,
2023). The population might comprise, say, all areal units
across some landscape (“sites”), in which case the sample
would be a subset of those sites. The inference is descrip-
tive in that the aim is to describe (rather than explain) a
variable of interest in the population. A common exam-
ple is the proportion of sites occupied by some species
(Bowler et al., 2021; Outhwaite et al., 2020; Powney et al.,
2019; Stroh et al., 2023; van Strien & van Grunsven,
2023), but there are many others.

Of more importance than the size of a sample for
descriptive inference is whether it is representative of the
population about which inferences are to be drawn
(Meng, 2018). In a representative sample, the distribution
of the variable of interest is similar to its distribution in
the population (Bethlehem et al., 2008). An equivalent
definition is that there is little to no correlation between
inclusion in the sample and the variable of interest, the
“data defect correlation” or ddc (Meng, 2018). Intuitively,
statistics derived from a representative sample, such as
means and proportions, will be similar to their popula-
tion equivalents.

Unfortunately, ddcs are likely to be appreciable in big
biodiversity datasets. For one, naturalists preferentially
visit and collect data at sites where they are likely to see
species that interest them (Bowler et al., 2022; Forister
et al., 2023). When those species’ abundances or distribu-
tions are the variables of analytic interest, preferential
sampling naturally results in a positive ddc (McClure &
Rolek, 2023). On the other hand, naturalists might be
constrained to visiting and collecting data in, say,
built-up areas, which are easier to access than remote
locations (Geldmann et al., 2016; Hughes et al., 2020;
Mandeville et al., 2022). Built-up areas generally have
low-quality habitats, meaning that species are less likely
to occupy them in large numbers and that the ddc might
be negative.

Inferences from unrepresentative samples, with
appreciable ddcs, are likely to be misleading. Imagine a
researcher who wants to estimate the average abundance
of some species across a landscape. An obvious (but
naive) approach would be to calculate its mean abun-
dance across sampled sites and assume that this is similar
to its average abundance across the wider landscape.
However, if the locations at which the species is most
abundant were preferentially sampled, then the
sample-based estimate of its mean abundance will be
upwardly biased. To use the analogy of Forister et al.
(2023), sampled locations would be life rafts; nonsampled
locations would be the sinking ship.

It is simple to counteract the biasing effect of the ddc
if the probability that each site was included in the sam-
ple is known; that is if a probability sample is available.
In this case, more weight can be placed on the data from
sites that were less likely to be included. The effect of this
type of weighting is easiest to explain heuristically: the
sample is augmented with “copies” of the data from sites
that were less likely to be sampled, effectively bringing
sample inclusion probabilities across sites to parity. Two
variables cannot be correlated if one of them is constant,
which means there can be no correlation between the
weighted sample inclusion probabilities and the variable
of interest across sites. It follows that the ddc, which is
the correlation between actual (weighted) sample inclu-
sion and the variable of interest, is zero in expectation
(Meng, 2022), and the sample can be considered repre-
sentative (Lohr, 2022). Weighting of this type is known as
“design-based” inference, because the inclusion probabil-
ities are a feature of the sampling design.

Design-based inference is not applicable for the types
of big biodiversity datasets we consider here, because
they were not collected according to a probabilistic sam-
pling design. We do not know the probability that sites
were visited by the collectors of specimens now held in
museums and on GBIF. Nor do we know the probability
that citizen scientists visited and collected data at each
site across most landscapes. Matters are simpler when
using data from structured monitoring schemes, which
often aim for a probability sample (e.g., the UK
Pollinator Monitoring Scheme; UK PoMS, 2023).
However, the incomplete uptake of sites that were
selected for inclusion (Pescott et al., 2015, 2019) means
that, in practice, these samples too are nonprobabilistic.
(Incomplete uptake in biodiversity monitoring is analo-
gous to the issue of nonresponse in survey sampling,
e.g., Bethlehem et al., 2008.) When sample inclusion
probabilities are not known, an alternative to
design-based inference is needed.

Most approaches to inference from nonprobability
samples involve estimating the inclusion probabilities. A
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relatively simple example is poststratification, where the
observations (for each site) are split into strata based on
covariates, and sites in strata that are underrepresented
in the population (based on the population totals of the
covariates) are given more weight (Valliant et al., 2018).
Using covariates to estimate sample inclusion probabili-
ties is equivalent to adjusting the samples in such a way
that the distributions of those covariates in the sample
more closely resemble their distributions in the popula-
tion (i.e., across all sites in the wider landscape). If the
covariates affect both the variable of interest and sample
inclusion, then inferences drawn from the adjusted sam-
ple will be closer to the truth than those from the original
(naive) sample. In the context of inference from
nonprobability samples, covariates affecting both sample
inclusion and the variable of interest, which are not of
direct analytic interest themselves, are known as “auxil-
iary variables” (Thoemmes & Mohan, 2015; Thoemmes &
Rose, 2014).

Before going further, it is important to note that most
approaches to inference from nonprobability samples rest
on the bold assumption that the variable of interest is
independent of sample inclusion after accounting for the
auxiliary variables (Bailey, 2022); that is, nonsampled
sites are “Missing At Random” (MAR; Rubin, 1976). If
the MAR assumption holds, then unbiased inference is
possible. In reality, the MAR assumption is likely to be
violated, because data are not available on all relevant
auxiliary variables, so the best we can hope for is a reduc-
tion in bias relative to naive inferences drawn from the
unadjusted sample.

The use of sample adjustments in biodiversity moni-
toring is variable. It is common for monitoring schemes
to weight samples in such a way that the relative frequen-
cies of habitats or geographic areas in the sample are sim-
ilar to those in the population (Gregory et al., 2005;
Van Swaay et al., 2002, 2008; Weiser et al., 2020). But it is
also common to see samples treated as though they are
representative despite clear evidence to the contrary. For
example, Vellend et al. (2013) and Dornelas et al. (2014)
purported to document globally representative time
trends in species richness, but Gonzalez et al. (2016)
showed that their samples were highly unrepresentative
with respect to drivers of biodiversity change and species
richness itself. (See Boyd, Powney, & Pescott, 2023 for a
review of this debate and others similar to it.) We suspect
that many of those who do not deal with issues of sample
representativeness are not familiar with the gravity of the
problem or the relevant theory and adjustment methods.

In this paper, we introduce six approaches to descrip-
tive inference using unrepresentative nonprobability
samples and demonstrate how they relate to each other
(conceptually and mathematically). We apply each

approach to a simple two-part biodiversity monitoring
problem. The first part is to estimate mean occupancy of
the plant C. vulgaris across 1-km grid squares in Britain
in two time periods; the second is to estimate the differ-
ence between the two (i.e., the time trend). Calluna
vulgaris is an attractive case study because we have good
estimates of its true geographic distribution in both
periods from satellite (among other sources). The
approaches to the inference that we demonstrate are
subsampling, quasirandomization (Elliott & Valliant,
2017), poststratification (Little, 1993), superpopulation
modeling (Valliant, 2009), a “doubly robust” estimator
(Chen et al., 2020), and multilevel regression and
poststratification (MRP; Gelman, 2007; Gelman & Little,
1997). Each can be (MRP more loosely than the rest)
interpreted as an attempt to weight the sample in such a
way that it more closely resembles the population, in the
hope that this results in more accurate descriptive infer-
ences. We demonstrate the effects of each approach on
the distributions of auxiliary variables in the sample, as
well as on the resulting estimates of mean occupancy in
each period and the time trend between the two.
Applying the adjustment methods to a real-world exam-
ple reveals challenges that ecologists are likely to face,
and we discuss these in detail.

METHODS

True distribution of Calluna vulgaris

We approximated the true distribution of the dwarf shrub
vascular plant Calluna vulgaris (Heather) in two time
periods: 1987–1999 and 2010–2019. For the first period,
we used the 1990 UKCEH land cover map (Rowland
et al., 2020); for the second, we used the 2018 version
(Morton et al., 2022). The land cover maps are derived
from satellite images, which means that they provide
information for every 1-km grid square. From these
maps, we identified 1-km grid squares (British National
Grid, EPSG:27700) with >0% heather or heather grass-
land cover. To these, we added 1-km squares in which
C. vulgaris was recorded in each time period by the
Botanical Society of Britain and Ireland (BSBI). The time
periods considered cover the main periods of recording
for two national distribution atlases, which involved a
concerted effort by volunteers (citizen scientists) to docu-
ment vascular plants across the United Kingdom
(Preston et al., 2002; Stroh et al., 2023). Acknowledging
that some 1-km squares may have been erroneously
classed as having some heather or heather grassland cov-
erage by the land cover maps, we removed any 1-km
squares that fell within 10-km grid squares in which
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C. vulgaris had not been recorded by the BSBI in the
period 1950–2019. Given that this period included record-
ing for three national distribution atlases (the two cited
above plus Perring & Walters, 1962), we assumed that
the union of all 10-km occurrences within this period
encompassed all known populations irrespective of finer
scale changes. Figure 1 maps the resulting estimates of
the true 1-km distributions of C. vulgaris in both time
periods.

Sample data on Calluna vulgaris occupancy

The 1-km samples for both time periods (sampled
squares in Figure 1) encompass any vascular plant data
for which the date of collection is known (i.e., the record

is resolved to the day), either at the 1-km scale or finer,
collected by the BSBI for the national distribution atlases
of Preston et al. (2002) and Stroh et al. (2023). Having
been collected by volunteers, the data come under the
banner of citizen science.

Auxiliary data

We used two auxiliary variables for which data are
available for all 1-km grid squares in Great Britain: the
proportion of each 1-km grid square that falls within
some form of protected area (including everything from
SSSIs to local nature reserves; UNEP-WCMC & IUCN,
2020) and the average elevation of each 1-km square
(Intermap, 2009). New protected areas are designated

F I GURE 1 Left column: the distribution of Calluna vulgaris in both time periods. Green squares are occupied and gray squares are not.

yN is mean occupancy or, equivalently, the proportion of squares occupied. The ddcs are the correlations between sample inclusion (1 if the

square is in the sample and 0 alternatively) and occupancy. Right column: the nonprobability 1-km samples for each time period. Purple

squares were sampled and gray squares were not. n is the number of squares sampled. We assumed that C. vulgaris was recorded in all

sampled grid squares that it occupied in the relevant time period. The true trend is the difference between population means, and the sample

trend is the difference between sample means (i.e., mean occupancy across purple squares).
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periodically, so we used the set that was designated
prior to 1987 for the first time period and prior to 2010
for the second (i.e., the beginning of each period). We
suspect that 1-km squares with more protected area cov-
erage are more likely to be visited by naturalists
(Girardello et al., 2019) and, because protected areas
tend to have higher quality habitat, are also more likely
to be occupied by C. vulgaris. Similarly, elevation should
affect both sample inclusion and C. vulgaris occupancy.
Sites at higher elevations are harder to access on
account of their relatively harsh terrain and remoteness,
and elevation is a known predictor of C. vulgaris occu-
pancy (Stroh et al., 2023).

One of the adjustment methods that we describe
below, quasirandomization, requires additional
covariates (we use the term “covariate” to distinguish
these from the auxiliary variables as defined earlier). The
method involves the estimation of sample inclusion prob-
abilities for every 1-km grid square in Britain. This is a
matter of prediction rather than inference, because we
know whether each 1-km square was sampled (i.e., there
are no missing data), so it was sensible to use a wider
range of covariates. See table 1 in Boyd, Stewart,
et al. (2023; version 1) for a list of the additional
covariates used in this model.

Estimating the per-period population mean

The first step in our biodiversity monitoring problem was
to estimate the mean occupancy of C. vulgaris in each
time period. Although not usually written this way, it is
helpful for what comes later to re-express the population
mean as a weighted sum:

yN ¼ 1
N

XN
i¼1

yi ¼
XN
i¼1

yi
N
¼
XN
i¼1

yi wiP
Nwi

, ð1Þ

where y is occupancy (1= occupied and 0= unoccupied),
N is the population size, i indexes 1-km grid squares and
wi ¼ 1=N (N is the same in both time periods). The
denominator in the rightmost expression might seem
unnecessary, because it equals 1. We have retained it to
illustrate the similarity between this expression and the
sample-based estimators below, which have a similar
form but whose sampling weights w do not necessarily
sum to one. (We use the term “estimator” to describe a
rule for estimating some quantity from a sample; here,
that quantity is the population mean.) For notational
simplicity, we do not index the time period, and the
reader should remember that yN is time-period specific.
In practice, y is not known for all i in the population, so
sample-based estimators of yN are needed.

The design-based estimator

The design-based estimator of the population mean,
which is applicable only when a probability sample of
some sort is available (Lohr, 2022), has a similar form to
Equation (1):

ydb ¼
Xn
i¼1

yi wiP
nwi

: ð2Þ

The differences are that the sums are over the sample
size n rather than N and that the weights wi are not nec-
essarily constant. Rather, the weight for unit i, wi, is
equal to the reciprocal of the probability that it was
included in the sample ¼ 1=pi.

Sample inclusion probabilities are, by definition, not
known for nonprobability samples, so alternative estima-
tors are required. We present six such estimators below,
three of which—quasirandomization, poststratification,
and superpopulation modeling—are explicit attempts to
come up with a set of weights wi that produce a reason-
able estimate of yN using Equation (2). The other three—
a “doubly robust” estimator, subsampling, and MRP—are
not, but they are conceptually similar.

Estimators for nonprobability samples

The following estimators have been used in survey sam-
pling to estimate population means from nonprobability
samples. More details on each can be found in Valliant
et al. (2018), Lumley (2010), and Lohr (2022). See Boyd
(2023) for an R Markdown document containing the code
to implement each of the adjustment methods.

Naive sample mean

When sample inclusion probabilities are unavailable, a
simple option is to assume that wi ¼ 1=n for all i. In this
case, Equation (2) gives the (naive) sample mean. As the
weights are constant, the sample mean does not adjust
for differences in y between the sampled and nonsampled
population units. It is nevertheless widely used in biodi-
versity monitoring.

Quasirandomization

An alternative approach is to imagine that the
nonprobability sample was selected probabilistically and to
estimate the implied inclusion probabilities. Any binary
model and covariates can be used. Once inclusion
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probabilities pi have been estimated, the weights wi ¼ 1=pi
(as in the design-based estimator). In our example, we
used random forests and several covariates (including the
auxiliaries) to estimate pseudoinclusion probabilities.
More complex approaches are possible and have been
used to map species distributions (Johnston et al., 2020).

Poststratification

Another approach to estimating sampling weights is
poststratification. Poststratification requires categorical
auxiliary data, so continuous variables must be
discretized prior to analysis (Valliant, 2020). The auxil-
iary variables are crossed (think contingency tables) to
create poststrata. Each poststratum j has a sample size nj
and population size Nj. The sampling weight wi for popu-
lation unit i in poststratum j is given by Nj=nj.

In our example, we split elevation into 10 categories
using its deciles (i.e., cut points at the 10th and 20th per-
centiles, etc.). This did not make sense for the variable
denoting the proportion of each grid square that falls
within a protected area, because most squares took the
value one or zero. We split this variable into two catego-
ries, 0 and >0; that is whether or not there is some
protected land in the grid square. Discretization gave
10× 2¼ 20 poststrata.

It is sensible to discretize the auxiliary variables in such
a way that the variable of interest varies among categories.
Otherwise, the adjustment from poststratifying will be
minor (or unnecessary)! Figure 2 shows that the mean
occupancy of C. vulgaris in the samples differs appreciably
among levels of the auxiliary variables.

Superpopulation modeling

Superpopulation modeling is conceptually different from
the adjustment methods described above. The premise is
that some model exists that describes the variable of
interest in the population. If this model can be recovered
from the sampled outcome variable y and the auxiliary
data, it can be used to predict the variable of interest for
nonsampled units. Given a prediction for each
nonsampled i, it is then simple to estimate the
population mean.

A general (i.e., multiple) linear regression model of y
has the form

EM yið Þ¼ xTi β, ð3Þ

where the subscript M indicates that the expectation
(mean) is with respect to the model, xi is the vector of

F I GURE 2 Mean occupancy of Calluna vulgaris for each level of the auxiliary variables in each time period. The auxiliary variables

were originally on a continuous scale, but we discretized them to enable poststratification. See the main text for details.
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auxiliary variables for unit i, the superscript T indicates
that the vector xi has been transposed (to a row vector)
and β is a column vector of parameters. A prediction of y
for unit i is

byi ¼ xTi bβ: ð4Þ

The accent on β indicates that it is an estimate (the
least squares estimate in this case). If s is the set of
nonsampled population units, the superpopulation model
prediction of the population mean is

ysp ¼

P
i � s

y+
P
i � s

by
N

: ð5Þ

That is, it is the sum of the known outcome values in
the sample and those predicted by the model for the
remainder of the population divided by the popula-
tion size.

A feature of ysp is that it can be expressed in the same
form as the design-based estimator in Equation (2), with
the weights wi being a function of the auxiliary variables
in sampled and nonsampled population units (Elliott &
Valliant, 2017). (Code to verify this numerically is avail-
able at https://github.com/robboyd/selectionBiasEffects/
tree/master/R.) As in the other adjustment models, then,
the superpopulation estimator is an approach to estimat-
ing the sampling weights wi.

Linear regression might seem like an unusual choice
of model for a binary outcome (occupancy), but we felt
that it was the best option here. One reason is that the
implied model is actually linear for an estimator in the
form of Equation (2) (Valliant, 2020). Most important,
however, is that the use of a linear model enables the
estimation of sampling weights (Valliant et al., 2018; sup-
plementary material 1 in Boyd, 2023). This is helpful,
because those weights can be used to show the effects of
superpopulation modeling on the distributions of the
auxiliary variables in the sample (see Evaluating the
effects of the adjustments below). Alternative models can
be used when weights are not required (e.g., Wu & Sitter,
2001). In our example superpopulation model, we used
the auxiliary variables as predictors.

Doubly robust estimator

The doubly robust estimator combines the
superpopulation model and the sample inclusion model
from the quasirandomization procedure in such a way
that, if either is correct and the sample size is large, then

the estimate of the population mean is unbiased
(Valliant, 2020). It has the general form (Wu, 2022)

ydr ¼
1
N

X
i � s

ri
pi

+
1
N

XN
i¼1

byi, ð6Þ

where ri ¼ yi −byi (i.e., the residuals of superpopulation
model). The second term on the right is the
superpopulation model prediction of YN . If the
superpopulation model is correctly specified, then it is an
unbiased estimate of YN . However, if the
superpopulation model is misspecified, then the second
term needs to be corrected, which is when the first term
comes in. If the quasirandomization sample inclusion
model is correctly specified, the first term corrects the
second by adding the residuals of the superpopulation
model divided by the (correctly) estimated
pseudoinclusion probabilities. This is sufficient to pro-
duce an unbiased estimate of YN , even when the
superpopulation model is wrong. When the
superpopulation model is correct, the first term is
0, because ri= 0. When neither model is correct, ydr is a
biased estimator of YN . See Chen et al. (2020), who com-
bined probability and nonprobability samples, for a simi-
lar approach.

Subsampling

Perhaps more familiar to ecologists than the above
approaches is subsampling (Beck et al., 2014; Steen et al.,
2020). The idea is to create a representative “miniature”
of the population out of the sample (Meng, 2022) and to
calculate the quantity of interest (mean occupancy) from
this subsample. Subsampling trades sample size for
representativeness.

Our approach was to draw stratified random samples
of size N=10¼ 22,958 with replacement from the original
samples. We used the same strata as described above (see
Poststratification). The decision to set n¼N=10 was
somewhat arbitrary, but changing the subsample size
makes little difference to the point estimates of the popu-
lation means (although they become more precise with
increasing subsample size; supplementary material 1 in
Boyd, 2023). The subsample mean is the estimator of the
population mean.

Multilevel regression and poststratification

MRP is an extension of poststratification and a variation
of superpopulation modeling (Gelman, 2007; Gelman &
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Little, 1997; Valliant et al., 2018). A hierarchical model is
used to estimate mean occupancy in each poststratum.
The advantage of using a hierarchical model is that cells
with few or no data borrow information from cells with
more data (i.e., partial pooling or shrinkage is exploited).
The population mean is the weighted mean of the stra-
tum means, when the weights are equal to the proportion
of the population in each stratum.

Our hierarchical model is a binomial generalized lin-
ear model (GLM) with a logit link function, a fixed inter-
cept and random intercepts for the auxiliary variables
and their interaction (see https://mc-stan.org/rstanarm/
articles/mrp.html for a similar formulation). We fitted
the model in a Bayesian framework using five Markov
Chain Monte Carlo (MCMC) chains, each with 1000 iter-
ations. This was sufficient to achieve convergence on all
parameters in both time periods.

Confidence intervals

We present 95% confidence/credible intervals for all esti-
mates of mean occupancy (credible intervals for MRP,
which we implemented in a Bayesian framework). For
most methods—superpopulation modeling, quasirando-
mization, subsampling and the doubly robust
estimator—we constructed bootstrap confidence inter-
vals. Resampling the original data with replacement, we
created 1000 bootstrap samples, from which we obtained
a distribution of estimates from each method and calcu-
lated percentile intervals. For MRP, we extracted credible
intervals from the posterior distributions of mean occu-
pancy. We used the confidence intervals provided by the
survey package (Lumley, 2010) for the poststratified and
naive (i.e., unadjusted) estimates.

Estimating the trend in mean occupancy

Having estimated mean occupancy in each time period,
the next step was to estimate the difference between the
two ¼ y2 − y1 (i.e., the trend). We constructed a confi-
dence interval for the trend estimated using each method
in one of two ways depending on whether the
method produced one estimate or a distribution. The
methods that produced a distribution of y2 − y1 include
those that we bootstrapped and MRP, which we fitted in
a Bayesian framework (meaning we have a posterior dis-
tribution). For these methods, we extracted percentile
confidence intervals (95%) from the distributions of esti-
mated trends. For the others, poststratification and the
naive estimator (the sample mean), we used the normal
approximation of the 95% confidence interval, given by

�1:96× the standard errors, where the standard errors
are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var y2ð Þ+var y1ð Þp

(Gelman, 2007).

Evaluating the effects of the adjustments

We used relative frequency plots (cf. Makela et al., 2014) to
assess whether the adjustments brought the distributions of
the auxiliary variables in the samples closer to their distri-
butions in the population. The first step was to split each
auxiliary variable into 50 bins of equal width spanning its
range. The relative frequency of grid squares (the 0i0s) in
each bin k is Ni,k=N , where Ni,k is the number of grid
squares in each bin k in the population and N is the pop-
ulation size (we use k to index the bins to distinguish
them from the strata described earlier). Similarly, the rel-
ative frequency of sampled grid squares in each k is
ni,k=n, where ni,k is the number of sampled grid squares
in bin k and n is the total sample size. In the adjusted

samples, the equivalent relative frequency is
P

i � k
wiP

N
wi

(slightly different for subsampling; see below). We com-
pared the original and adjusted samples’ deviations from
the population using the mean absolute error (MAE) of
the relative frequencies across all k. If the MAE from the
adjusted sample is smaller than the original sample, then
the adjustment brought the distribution of the auxiliary
variable closer to its population distribution.

We were not able to produce adjusted relative fre-
quency plots based on the doubly robust estimator or
MRP. The problem was that we could not estimate rea-
sonable sampling weights from either method, which are
needed to adjust the relative frequencies of the auxil-
iaries. While it has been shown how to derive unit-level
sampling weights when the MRP multilevel model is lin-
ear (Gelman, 2007), no formula has yet been derived for
the case of the binomial GLM (Valliant et al., 2018). As
for the doubly robust estimator, Valliant (2020) showed
how to derive “model-assisted” weights. Unfortunately,
in our case, many of the model-assisted weights were
very large and negative. The extreme weights appear to
be caused by the pattern of residuals from the
superpopulation model (recalling that we used a linear
regression despite the fact that occupancy is binary), but
it is beyond the scope of this paper to definitively diag-
nose the problem. There is no obvious way to derive
weights from the subsampling estimator either. However,
for this estimator, the adjusted relative frequencies of the
auxiliaries are simply their distributions in the subsam-
ples, so they are simple to obtain.

Assessing whether the estimates of mean occupancy
in each period and the trend were improved by each
adjustment method was simpler. We measured the
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difference between the point estimates of mean occu-
pancy and the truth using the absolute error = yN − yestj j,
where yest is the estimate. For the trends, whose signs are
of interest, we simply used the differences between the
estimates and the truth. We also assessed whether the
confidence/credible intervals produced by each method
covered the true means and trend. We did not consider
the power to detect the trend—that is, whether the
methods’ uncertainty intervals span zero at some
percentile—because many biodiversity applications are
descriptive inferential rather than decision theoretic.

RESULTS

Per-period sample representativeness and
estimated mean occupancy

The samples are large but somewhat unrepresentative
(Figure 1). 43% of grid squares were sampled in period
one, and the ddc is −0.115; in period two, 62% of grid
squares were sampled and the ddc is −0.057. A conse-
quence of these ddcs is that the naive sample means
underestimate the population means, especially in period
one where the magnitude of the ddc is greater (Figure 3).

With the exception of the doubly robust estimate in
period two, the estimates of mean occupancy from all
adjustment methods in both time periods had lower abso-
lute errors than the naive sample mean (Figure 3; MAEs
are provided in supplementary material 2 in Boyd, 2023).
The confidence intervals for the poststratified, subsample
and quasirandomization estimates covered the true

population mean in period one. In period two, no method’s
confidence/credible interval covered the population mean.

Estimated trend in mean occupancy

Estimates of the trend in mean occupancy from all
adjustment methods were more accurate than the differ-
ence in sample means (i.e., the naive estimate; Figure 4).
However, no method’s point estimate came close to the
true trend of −0.047, and their confidence/credible inter-
vals did not cover it.

Distributions of auxiliary variables

As measured using MAEs, the adjustment methods were
generally very good at bringing the distributions of the
auxiliaries in the samples closer to those in the popula-
tion. Figure 5 shows the sample and population distribu-
tions of elevation, but the MAEs for this and the
proportion of each grid square that falls within a
protected area can be found in supplementary material
2 of Boyd (2023).

DISCUSSION

We applied six approaches to descriptive inference from
nonprobability samples to a simple biodiversity monitor-
ing problem: the estimation of mean occupancy of the
plant C. vulgaris in two time periods and the trend

F I GURE 3 Naive (i.e., unadjusted) and adjusted sample-based estimates of mean occupancy in each time period. The shaded regions

are 95% confidence/credible intervals (see the main text for information on we constructed these for each method). MRP, multilevel

regression and poststratification.
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between the two. The methods generally worked well in
the sense that they brought the distributions of auxiliary
variables in the samples closer to their distributions in
the population (all 1-km grid squares in Britain).
Successful redistribution of the auxiliaries translated into
improvements in the estimates of mean occupancy in
both time periods and the trend between the two.
Importantly, however, no method was completely unbi-
ased, and their uncertainty intervals did not cover the

true values of occupancy in the second period or
the trend. An abatement rather than an elimination of
bias is probably the best outcome that can be expected,
because most adjustment methods rest on the untenable
assumption that nonsampled locations are MAR; that is,
the variable of interest is completely independent of sam-
ple inclusion given the auxiliary variables.

Unlike most practical situations, we were able to test
the MAR assumption, because we know the true

F I GURE 4 Trends in mean occupancy between periods one and two produced by the estimator from each adjustment method, in

addition to the naive sample estimate. Error bars delimit 95% confidence/credible intervals. The solid vertical black line denotes the true

population trend (−0.047).

F I GURE 5 Sample, population and weighted sample distributions of the auxiliary variable road length in periods one and two.
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distribution of C. vulgaris in Britain. In the first time
period, the partial correlation between sample inclusion
and occupancy, conditional on elevation and protected
area coverage, is −0.018; in period two it is 0.035 (supple-
mentary material 1 in Boyd, 2023). These “adjusted” ddcs
are lower in magnitude than the original ddcs, −0.115
and −0.058, which means that accounting for elevation
and protected area coverage increased the representative-
ness of the samples (recalling that a smaller ddc means a
more representative sample). That is not to say that the
samples became fully representative, which would be the
case in expectation of an MAR scenario. The usual yard-
stick for a representative sample is the simple random
sample, whose ddc is of the order N − 1=2 (Meng, 2018). In
our example, N − 1=2 ¼ 2:2− 6, which is several orders of
magnitude smaller than the “adjusted” ddcs. This goes to
show that, without a truly minuscule ddc, which would
only be induced (in expectation) when the MAR assump-
tion holds or under random sampling, sample means as
estimators of population means will be appreciably
biased (especially where N is large).

It might seem wise to include as many potential auxil-
iaries as possible to reduce the chance of missing a genu-
ine one. For example, Collins et al. (2001) advocated for
including all variables exceeding some prescribed correla-
tion with sample inclusion and the variable of interest.
This strategy can be a dangerous one, however.
Thoemmes and Rose (2014) showed that including corre-
lates of sample inclusion and the variable of interest,
rather than theoretically justifiable causes, can increase
bias in estimates of population means (also see
Thoemmes & Mohan, 2015). Indeed, in a previous ver-
sion of this manuscript (Boyd, Stewart, et al., 2023), we
took a more inclusive approach to the selection of auxil-
iary variables, and our estimates of C. vulgaris occupancy
in period two were generally more biased than the naive
estimate from the unadjusted sample.

Identifying appropriate auxiliary variables is likely to
be the most challenging part of adjusting samples in bio-
diversity monitoring. In many situations, the causes of
the variable of interest and sample inclusion are not
known. Taxon and dataset experts might be able to iden-
tify potential auxiliary variables, but it is unlikely that
they can identify them all (which would be needed to sat-
isfy the MAR assumption). The experts might also erro-
neously identify auxiliary variables that are not suitable,
in which case adjusting for those variables might do more
harm than good (Thoemmes & Rose, 2014). Even if
experts were able to correctly identify all relevant auxil-
iaries, those variables might not be reflected in available
data. Transparency regarding the availability and choice
of auxiliary variables should be an important component
of reporting for all biodiversity monitoring.

Acknowledging that variables of interest in biodiver-
sity monitoring are likely to be dependent on sample
inclusion even after controlling for the available auxil-
iaries, it might be worth considering adjustment methods
that forgo the MAR assumption. For example, Tchetgen
Tchetgen and Wirth (2017) showed that it is possible to
recover a true population regression model (and therefore
the population mean) by incorporating “instrumental
variables.” They define instrumental variables as those
that are predictive of sample inclusion, independent of
the variable of interest and independent of “selection
bias” (the latter defined as the mean of the variable of
interest in the sample minus the mean of the variable
of interest in nonsampled population units). We screened
three additional variables—the proportion of each grid
square that is accessible to the public, the density of post-
codes in each grid square and its nearest neighbors, and
the length of major roads in each grid square and its
nearest neighbors—to see if they satisfied these three
assumptions, but none did (supplementary material 1 in
Boyd, 2023). In practical situations, in which the variable
of interest is not known for nonsampled population
units, testing these assumptions would be challenging.

While we are confident that the availability of data on
auxiliary variables was the limiting factor in our example,
it is possible that improvements to the adjustment
methods themselves could have improved matters. When
sampling weights are not of interest, for example, it
might be sensible to use a binomial GLM, rather than a
general linear regression, for the superpopulation model
(Wu & Sitter, 2001). The multilevel modeling component
of MRP exploits partial pooling, so we could have used
more finely resolved strata on the basis that estimates for
sparse strata (with low sample sizes) would be shrunk
toward those from strata with more data. The question is
whether fine tuning the adjustment methods is likely to
result in large improvements in accuracy. As Mercer
et al., (2018), writing in the context of adjusting survey
samples, put it “[t]he right variables make a big differ-
ence for accuracy. Complex statistical methods, not so
much.” The fact that most adjustment methods
performed similarly in our example is further evidence
that the choice of auxiliary variables matters more than
the specifics of the adjustment method.

Given that the methods performed similarly in terms of
accuracy, it would be sensible to consider those that are
quickest to run. As we implemented it, MRP took by far the
longest to run of all the methods: about 10 hours per time
period on a computer cluster. Bootstrapping to estimate
confidence intervals meant that other methods, too, were
quite expensive to run. This was particularly true for the
quasirandomization and doubly robust procedures, both of
which involved repeatedly fitting the sample inclusion
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model, itself a time-consuming process. The remainder of
the methods—superpopulation modeling, subsampling,
and poststratification—took a negligible amount of time
to run.

Although we have only considered one species and
dataset, previous studies (in other disciplines) have shed
light on the factors that affect the accuracy of inference
from nonprobability samples more generally. Omitting
genuine auxiliary variables in the adjustment process is
more problematic when those variables explain larger
proportions of the variance in the variable of interest and
sample inclusion (Collins et al., 2001). Equally, the inclu-
sion of certain variables that are not appropriate auxil-
iaries becomes more problematic when they explain
larger proportions of the variance in the variable of inter-
est and sample inclusion (Thoemmes & Rose, 2014). In
practice, we do not know the strengths of the effects of
potential auxiliaries on the variable of interest and sam-
ple inclusion, or whether they have effects at all, but it is
clear that the selection of auxiliary variables will be a crit-
ical component of adjusting samples in biodiversity
monitoring.

Given the importance of selecting appropriate auxil-
iary variables, we propose the following general strategy
for analysts intending to draw inferences about biodiver-
sity change from geographically unrepresentative
nonprobability samples. The first step should be to con-
sult taxon and dataset experts, who might be able to iden-
tify relevant auxiliary variables. When possible,
consulting multiple experts to capture their uncertainty
about what affects sample inclusion and the variable of
interest would be desirable. If data are available on these
variables, then their distributions in the sample and pop-
ulation should be compared with assess whether the data
are representative with respect to that variable. Several
tools are available to perform such comparisons (Boyd
et al., 2021; Ruete, 2015). The next step should be to
adjust the sample based on the relevant auxiliaries and
to draw inferences from the adjusted samples. Like others
(e.g., Mercer et al., 2018), we found that it is of little con-
sequence which adjustment method is used, so it is sensi-
ble to pick one that is quick to run. Rather than
assuming that the adjustment worked perfectly, it is
important to acknowledge and report the potential for
residual bias. As we have shown, traditional uncertainty
intervals are not guaranteed (or even likely) to cover the
true population parameters of interest unless all relevant
auxiliaries are known and reflected in available data
(Meng, 2018). When there is doubt about the relevant
auxiliary variables, a safer strategy is to assess the risk of
bias qualitatively and to ensure it is reflected in the way
that findings are reported (Boyd et al., 2022; Meineke &
Daru, 2021; Pescott et al., 2022).

ACKNOWLEDGMENTS
Thank you to Richard Valliant and two anonymous
reviewers, whose comments greatly improved this paper.
All authors were supported by the National Environment
Research Council (NERC) Exploring the Frontiers award
number NE/X010384/1 “Biodiversity indicators from
nonprobability samples: Interdisciplinary learning for sci-
ence and society.” Oliver L. Pescott was also supported by
the NERC award number NE/R016429/1 as part of the
UK Status, Change and Projections of the Environment
(UK-SCAPE) program delivering National Capability.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data and an R Markdown document containing all
code to reproduce our analysis are available on Zenodo in
Boyd (2023) at https://doi.org/10.5281/zenodo.10029669.

REFERENCES
Bailey, M. A. 2022. “Comments on ‘Statistical Inference with

Non-probability Survey Samples’.” Survey Methodology 48(12):
331–38.

Beck, J., M. Böller, A. Erhardt, and W. Schwanghart. 2014. “Spatial
Bias in the GBIF Database and Its Effect on Modeling Species’
Geographic Distributions.” Ecological Informatics 19: 10–15.
https://doi.org/10.1016/j.ecoinf.2013.11.002.

Bethlehem, J., F. Cobben, and B. Schouten. 2008. “Indicators for
the Representativeness of Survey Response.” In Statistics
Canada’s International Symposium Series: Proceedings 11.
Statistics Canada. https://www150.statcan.gc.ca/n1/pub/12-
001-x/2009001/article/10887-eng.pdf.

Bowler, D. E., N. Bhandari, L. Repke, C. Beuthner, C. T. Callaghan,
D. Eichenberg, K. Henle, et al. 2022. “Decision-Making of
Citizen Scientists when Recording Species Observations.”
Scientific Reports 12(1): 1–12. https://doi.org/10.1038/s41598-
022-15218-2.

Bowler, D. E., D. E. Klaus-, J. Conze, F. Suhling, K. Baumann,
T. Benken, A. Bönsel, et al. 2021. “Winners and Losers over
35 Years of Dragonfly and Damselfly Distributional Change in
Germany.” Diversity and Distributions 27: 1353–66. https://doi.
org/10.1111/ddi.13274.

Boyd, R. J. 2023. “Adjusting for Bias in Biodiversity Monitoring
Data (1.0).” Zenodo, Data set. https://doi.org/10.5281/zenodo.
10029669.

Boyd, R. J., G. Powney, C. Carvell, and O. L. Pescott. 2021.
“occAssess: An R Package for Assessing Potential Biases in
Species Occurrence Data.” Ecology and Evolution 11:
16177–87. https://doi.org/10.1002/ece3.8299.

Boyd, R. J., G. D. Powney, F. Burns, A. Danet, F. Duchenne, M. J.
Grainger, S. G. Jarvis, et al. 2022. “ROBITT: A Tool for
Assessing the Risk-of-Bias in Studies of Temporal Trends in
Ecology.” Methods in Ecology and Evolution 13: 1497–1507.
https://doi.org/10.1111/2041-210X.13857.

Boyd, R. J., G. D. Powney, and O. L. Pescott. 2023. “We Need to
Talk about Nonprobability Samples.” Trends in Ecology &

12 of 14 BOYD ET AL.

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4214 by N

ew
castle U

niversity, W
iley O

nline L
ibrary on [22/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5281/zenodo.10029669
https://doi.org/10.1016/j.ecoinf.2013.11.002
https://www150.statcan.gc.ca/n1/pub/12-001-x/2009001/article/10887-eng.pdf
https://www150.statcan.gc.ca/n1/pub/12-001-x/2009001/article/10887-eng.pdf
https://doi.org/10.1038/s41598-022-15218-2
https://doi.org/10.1038/s41598-022-15218-2
https://doi.org/10.1111/ddi.13274
https://doi.org/10.1111/ddi.13274
https://doi.org/10.5281/zenodo.10029669
https://doi.org/10.5281/zenodo.10029669
https://doi.org/10.1002/ece3.8299
https://doi.org/10.1111/2041-210X.13857


Evolution 38(6): 521–531. https://doi.org/10.1016/j.tree.2023.
01.001.

Boyd, R. J., G. B. Stewart, and O. L. Pescott. 2023. “Descriptive
Inference Using Large, Unrepresentative Nonprobability
Samples: An Introduction for Ecologists [Version 1].”
Ecoevorxiv. https://doi.org/10.32942/X2359P.

Chen, Y., P. Li, and C. Wu. 2020. “Doubly Robust Inference with
Nonprobability Survey Samples.” Journal of the American
Statistical Association 115(532): 2011–21. https://doi.org/10.
1080/01621459.2019.1677241.

Collins, L. M., J. Schafer, and C. Kam. 2001. “A Comparison of
Restrictive Strategies in Modern Missing Data Procedures.”
Psychological Methods 6: 330–351. https://doi.org/10.1037/
1082-989X.6.4.330.

Dornelas, M., N. J. Gotelli, B. McGill, H. Shimadzu, F. Moyes,
C. Sievers, and A. E. Magurran. 2014. “Assemblage Time Series
Reveal Biodiversity Change but Not Systematic Loss.” Science
344(6181): 296–99. https://doi.org/10.1126/science.1248484.

Elliott, M. R., and R. Valliant. 2017. “Inference for Nonprobability
Samples.” Statistical Science 32(2): 249–264. https://doi.org/10.
1214/16-STS598.

Forister, M. L., S. H. Black, C. S. Elphick, E. M. Grames, C. A.
Halsch, C. B. Schultz, and D. L. Wagner. 2023. “Missing the
Bigger Picture: Why Insect Monitoring Programs Are Limited
in their Ability to Document the Effects of Habitat Loss.”
Conservation Letters 16: e12951. https://doi.org/10.1111/conl.
12951.

Geldmann, J., J. Heilmann-Clausen, T. E. Holm, I. Levinsky,
B. Markussen, K. Olsen, C. Rahbek, and A. P. Tøttrup. 2016.
“What Determines Spatial Bias in Citizen Science? Exploring
Four Recording Schemes with Different Proficiency
Requirements.” Diversity and Distributions 22(11): 1139–49.
https://doi.org/10.1111/ddi.12477.

Gelman, A. 2007. “Struggles with Survey Weighting and Regression
Modeling.” Statistical Science 22(2): 153–164. https://doi.org/
10.1214/088342306000000691.

Gelman, A., and T. Little. 1997. “Poststratification into Many
Categories Using Hierarchical Regression.” Survey
Methodology 23(2): 127–335.

Girardello, M., A. Chapman, R. Dennis, L. Kaila, P. A. V. Borges,
and A. Santangeli. 2019. “Gaps in Butterfly Inventory Data: A
Global Analysis.” Biological Conservation 236: 289–295.
https://doi.org/10.1016/j.biocon.2019.05.053.

Gonzalez, A., B. J. Cardinale, G. R. H. Allington, J. Byrnes, K. A.
Endsley, D. G. Brown, D. U. Hooper, F. Isbell, M. I. O’Connor,
and M. Loreau. 2016. “Estimating Local Biodiversity Change:
A Critique of Papers Claiming no Net Loss of Local Diversity.”
Ecology 97(8): 1949–60. https://doi.org/10.1890/15-1759.1.

Gregory, R. D., A. Van Strien, P. Vorisek, A. W. G. Meyling, D. G.
Noble, R. P. B. Foppen, and D. W. Gibbons. 2005. “Developing
Indicators for European Birds.” Philosophical Transactions of
the Royal Society B: Biological Sciences 360(1454): 269–288.
https://doi.org/10.1098/rstb.2004.1602.

Hudson, L. N., T. Newbold, S. Contu, S. L. L. Hill, I. Lysenko,
D. Palma, H. R. P. Phillips, et al. 2014. “The PREDICTS
Database: A Global Database of how Local Terrestrial
Biodiversity Responds to Human Impacts.” Ecology and
Evolution 4: 4701–35.

Hughes, A., M. Orr, K. Ma, M. Costello, J. Waller, P. Provoost,
C. Zhu, and H. Qiao. 2020. “Sampling Biases Shape our View

of the Natural World.” Ecography 44: 1259–69. https://doi.org/
10.1111/ecog.05926.

Intermap. 2009. “NEXTMap British Digital Terrain 50 m Resolution
(DTM10) Model Data by Intermap.” NERC Earth Observation
Centre. https://catalogue.ceda.ac.uk/uuid/
f5d41db1170f41819497d15dd8052ad2.

Johnston, A., E. Matechou, and E. B. Dennis. 2022. “Outstanding
Challenges and Future Directions for Biodiversity Monitoring
Using Citizen Science Data.” Methods in Ecology and Evolution
14: 103–116. https://doi.org/10.1111/2041-210X.13834.

Johnston, A., N. Moran, A. Musgrove, D. Fink, and S. R. Baillie.
2020. “Estimating Species Distributions from Spatially Biased
Citizen Science Data.” Ecological Modelling 422: 108927.
https://doi.org/10.1016/j.ecolmodel.2019.108927.

Little, R. J. A. 1993. “Post-Stratification: A Modeler’s Perspective.”
Journal of the American Statistical Association 88(Sep):
1001–12.

Lohr, S. 2022. Sampling: Design and Analysis, 3rd ed. Boca Raton,
FL: CRC Press.

Lumley, T. 2010. Complex Surveys: A Guide to Analysis Using R, 1st
ed. Hoboken, NJ: Wiley.

Makela, S., Y. Si, and A. Gelman. 2014. “Statistical Graphics for
Survey Weights.” Revista Colombiana de Estadística 37:
285–295. https://doi.org/10.15446/rce.v37n2spe.47937.

Mandeville, C. P., E. B. Nilsen, and A. G. Finstad. 2022. “Spatial
Distribution of Biodiversity Citizen Science in a Natural Area
Depends on Area Accessibility and Differs from Other
Recreational Area Use.” Ecological Solutions and Evidence
3(4): 1–14. https://doi.org/10.1002/2688-8319.12185.

McClure, C. J. W., and B. W. Rolek. 2023. “Pitfalls Arising from Site
Selection Bias in Population Monitoring Defy Simple
Heuristics.” Methods in Ecology and Evolution 14(6): 1489–99.
https://doi.org/10.1111/2041-210X.14120.

Meineke, E. K., and B. H. Daru. 2021. “Bias Assessments to Expand
Research Harnessing Biological Collections.” Trends in
Ecology & Evolution 36(12): 1071–82. https://doi.org/10.1016/j.
tree.2021.08.003.

Meng, X.-L. 2018. “Statistical Paradises and Paradoxes in Big Data
(I): Law of Large Populations, Big Data Paradox, and the 2016
us Presidential Election.” Annals of Applied Statistics 12(2):
685–726. https://doi.org/10.1214/18-AOAS1161SF.

Meng, X.-L. 2022. “Comments on the Wu (2022) Paper by Xiao-Li
Meng 1: Miniaturizing Data Defect Correlation: A Versatile
Strategy for Handling Non-probability Samples.” Survey
Methodology 48(2): 1–22.

Mercer, A., A. Lau, and C. Kennedy. 2018. “For Weighting Online
Opt-in Samples, What Matters Most?” In Pew Research Center
1–55. https://pewrsr.ch/3heqknn.

Morton, R., C. Marston, A. O’Neil, and C. Rowland. 2022. “Land
Cover Map 2018 (1 km Summary Rasters, GB and
N. Ireland).” NERC EDS Environmental Information Data
Centre. https://doi.org/10.5285/9b68ee52-8a95-41eb-8ef1-
8d29e2570b00.

Nelson, G., and S. Ellis. 2019. “The History and Impact of
Digitization and Digital Data Mobilization on Biodiversity
Research.” Philosophical Transactions of the Royal Society B:
Biological Sciences 374(1763): 2–10. https://doi.org/10.1098/
rstb.2017.0391.

Outhwaite, C., R. D. Gregory, R. E. Chandler, B. Collen, and
N. J. B. Isaac. 2020. “Complex Long-Term Biodiversity Change

ECOLOGY 13 of 14

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4214 by N

ew
castle U

niversity, W
iley O

nline L
ibrary on [22/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.tree.2023.01.001
https://doi.org/10.1016/j.tree.2023.01.001
https://doi.org/10.32942/X2359P
https://doi.org/10.1080/01621459.2019.1677241
https://doi.org/10.1080/01621459.2019.1677241
https://doi.org/10.1037/1082-989X.6.4.330
https://doi.org/10.1037/1082-989X.6.4.330
https://doi.org/10.1126/science.1248484
https://doi.org/10.1214/16-STS598
https://doi.org/10.1214/16-STS598
https://doi.org/10.1111/conl.12951
https://doi.org/10.1111/conl.12951
https://doi.org/10.1111/ddi.12477
https://doi.org/10.1214/088342306000000691
https://doi.org/10.1214/088342306000000691
https://doi.org/10.1016/j.biocon.2019.05.053
https://doi.org/10.1890/15-1759.1
https://doi.org/10.1098/rstb.2004.1602
https://doi.org/10.1111/ecog.05926
https://doi.org/10.1111/ecog.05926
https://catalogue.ceda.ac.uk/uuid/f5d41db1170f41819497d15dd8052ad2
https://catalogue.ceda.ac.uk/uuid/f5d41db1170f41819497d15dd8052ad2
https://doi.org/10.1111/2041-210X.13834
https://doi.org/10.1016/j.ecolmodel.2019.108927
https://doi.org/10.15446/rce.v37n2spe.47937
https://doi.org/10.1002/2688-8319.12185
https://doi.org/10.1111/2041-210X.14120
https://doi.org/10.1016/j.tree.2021.08.003
https://doi.org/10.1016/j.tree.2021.08.003
https://doi.org/10.1214/18-AOAS1161SF
https://pewrsr.ch/3heqknn
https://doi.org/10.5285/9b68ee52-8a95-41eb-8ef1-8d29e2570b00
https://doi.org/10.5285/9b68ee52-8a95-41eb-8ef1-8d29e2570b00
https://doi.org/10.1098/rstb.2017.0391
https://doi.org/10.1098/rstb.2017.0391


among Invertebrates, Bryophytes and Lichens.” Nature
Ecology & Evolution 4: 384–392. https://doi.org/10.1038/
s41559-020-1111-z.

Perring, F., and S. Walters. 1962. Atlas of the British Flora. Thomas
Nelson & Sons. https://books.google.co.uk/books/about/
Atlas_of_the_British_Flora.html?id=2kWJzgEACAAJ&redir_
esc=y.

Pescott, O. L., P. A. Stroh, T. A. Humphrey, and K. J. Walker. 2022.
“Simple Methods for Improving the Communication of
Uncertainty in Species’ Temporal Trends.” Ecological Indicators
141: 109117. https://doi.org/10.1016/j.ecolind.2022.109117.

Pescott, O. L., K. J. Walker, F. Harris, H. New, C. M. Cheffings,
N. Newton, M. Jitlal, J. Redhead, S. M. Smart, and D. B. Roy.
2019. “The Design, Launch and Assessment of a New
Volunteer-Based Plant Monitoring Scheme for the
United Kingdom.” PLoS One 14(4): 1–30. https://doi.org/10.
1371/journal.pone.0215891.

Pescott, O. L., K. J. Walker, M. J. O. Pocock, M. Jitlal, C. L.
Outhwaite, C. M. Cheffings, F. Harris, and D. B. Roy. 2015.
“Ecological Monitoring with Citizen Science: The Design and
Implementation of Schemes for Recording Plants in Britain
and Ireland.” Biological Journal of the Linnean Society 115(3):
505–521. https://doi.org/10.1111/bij.12581.

Powney, G. D., C. Carvell, M. Edwards, R. K. A. Morris, H. E. Roy,
B. A. Woodcock, and N. J. B. Isaac. 2019. “Widespread Losses
of Pollinating Insects in Britain.” Nature Communications
10(2019): 1–6. https://doi.org/10.1038/s41467-019-08974-9.

Preston, C. D., D. A. Pearman, and T. D. Dines, eds. 2002. New Atlas
of the British and Irish Flora. Oxford: Oxford University Press.

Rowland, C., C. Marston, R. Morton, and A. O’Neil. 2020. “Land
Cover Map 1990 (1 Km Dominant Target Class, GB) v2.”
NERC EDS Environmental Information Data Centre. https://
doi.org/10.5285/f5e3bd00-efd0-4dc6-a454-aa597d84764a.

Rubin, D. B. 1976. “Inference and Missing Data.” Biometrika 63(3):
581–592. https://doi.org/10.1093/biomet/63.3.581.

Ruete, A. 2015. “Displaying Bias in Sampling Effort of Data
Accessed from Biodiversity Databases Using Ignorance Maps.”
Biodiversity Data Journal 3(1): 1–15. https://doi.org/10.3897/
BDJ.3.e5361.

Steen, V. A., M. W. Tingley, P. Paton, and C. Elphick. 2020. “Spatial
Thinning and Class Balancing: Key Choices Lead to Variation
in the Performance of Species Distribution models with
Citizen Science Data.” Methods in Ecology and Evolution 12
(December): 216–226. https://doi.org/10.1111/2041-210X.
13525.

Stroh, P. A., K. Walker, T. A. Humphrey, O. L. Pescott, and
R. Burkmar. 2023. Plant Atlas 2020: Mapping Changes in the
Distribution of the British and Irish Flora. Princeton: Princeton
University Press.

Tchetgen Tchetgen, E. J., and K. E. Wirth. 2017. “A General
Instrumental Variable Framework for Regression Analysis
with Outcome Missing Not at Random.” Biometrics 73(4):
1123–31. https://doi.org/10.1111/biom.12670.

Thoemmes, F., and K. Mohan. 2015. “Graphical Representation of
Missing Data Problems.” Structural Equation Modeling 22(4):
631–642. https://doi.org/10.1080/10705511.2014.937378.

Thoemmes, F., and N. Rose. 2014. “A Cautious Note on Auxiliary
Variables that Can Increase Bias in Missing Data Problems.”
Multivariate Behavioral Research 49(5): 443–459. https://doi.
org/10.1080/00273171.2014.931799.

UK PoMS. 2023. “The UK PoMS Annual Report 2022.” UK Centre
for Ecology and Hydrology and Joint Nature Conservation
Committee. https://ukpoms.org.uk/reports.

UNEP-WCMC, & IUCN. 2020. “Protected Planet: The World
Database on Protected Areas (WDPA)/The Global Database on
Protected Areas Management Effectiveness.” https://www.
protectedplanet.net/en/thematic-areas/wdpa.

Valliant, R. 2009. “Model-Based Prediction of Finite Population
Totals.” Handbook of Statistics 29(PB): 11–31. https://doi.org/
10.1016/S0169-7161(09)00223-5.

Valliant, R. 2020. “Comparing Alternatives for Estimation from
Nonprobability Samples.” Journal of Survey Statistics and
Methodology 8(2): 231–263. https://doi.org/10.1093/jssam/
smz003.

Valliant, R., J. A. Dever, and F. Kreuter. 2018. Practical Tools for
Designing and Weighting Survey Samples, 2nd ed. Cham:
Springer. https://doi.org/10.1007/978-3-319-93632-1.

van Strien, A. J., and R. H. A. van Grunsven. 2023. “In the Past
100 Years Dragonflies Declined and Recovered by Habitat
Restoration and Climate Change.” Biological Conservation 277:
109865. https://doi.org/10.1016/j.biocon.2022.109865.

Van Swaay, C. A. M., P. Nowicki, J. Settele, and A. J. Van Strien.
2008. “Butterfly Monitoring in Europe: Methods, Applications
and Perspectives.” Biodiversity and Conservation 17(14):
3455–69. https://doi.org/10.1007/s10531-008-9491-4.

Van Swaay, C. A. M., C. L. Plate, and A. J. Van Strien. 2002.
“Monitoring Butterflies in The Netherlands: How to Get
Unbiased Indices.” Proceedings of the Section Experimental and
Applied Entomology of the Netherlands Entomological Society
13: 21–27.

Vellend, M., L. Baeten, I. H. Myers-Smith, S. C. Elmendorf,
R. Beauséjour, C. D. Brown, P. De Frenne, K. Verheyen, and
S. Wipf. 2013. “Global Meta-Analysis Reveals no Net Change
in Local-Scale Plant Biodiversity over Time.” Proceedings of the
National Academy of Sciences of the United States of America
110(48): 19456–59. https://doi.org/10.1073/pnas.1312779110.

Weiser, E. L., J. E. Diffendorfer, L. Lopez-Hoffman, D. Semmens,
and W. E. Thogmartin. 2020. “Challenges for Leveraging
Citizen Science to Support Statistically Robust Monitoring
Programs.” Biological Conservation 242: 108411. https://doi.
org/10.1016/j.biocon.2020.108411.

Wu, C. 2022. “Statistical Inference With Non-Probability Survey
Samples.” In Survey Methodology, Catalogue No. 12-001-X.
Vol. 48, No. 2. Statistics Canada. Paper available at https://
www.statcan.gc.ca/pub/12-001-x/2022002/article/00002-eng.
htm.

Wu, C., and R. R. Sitter. 2001. “A Model-Calibration Approach to
Using Complete Auxiliary Information from Survey Data.”
Journal of the American Statistical Association 96(453):
185–193. https://doi.org/10.1198/016214501750333054.

How to cite this article: Boyd, Robin J., Gavin
B. Stewart, and Oliver L. Pescott. 2024.
“Descriptive Inference Using Large,
Unrepresentative Nonprobability Samples: An
Introduction for Ecologists.” Ecology e4214. https://
doi.org/10.1002/ecy.4214

14 of 14 BOYD ET AL.

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4214 by N

ew
castle U

niversity, W
iley O

nline L
ibrary on [22/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1038/s41559-020-1111-z
https://doi.org/10.1038/s41559-020-1111-z
https://books.google.co.uk/books/about/Atlas_of_the_British_Flora.html?id=2kWJzgEACAAJ&redir_esc=y
https://books.google.co.uk/books/about/Atlas_of_the_British_Flora.html?id=2kWJzgEACAAJ&redir_esc=y
https://books.google.co.uk/books/about/Atlas_of_the_British_Flora.html?id=2kWJzgEACAAJ&redir_esc=y
https://doi.org/10.1016/j.ecolind.2022.109117
https://doi.org/10.1371/journal.pone.0215891
https://doi.org/10.1371/journal.pone.0215891
https://doi.org/10.1111/bij.12581
https://doi.org/10.1038/s41467-019-08974-9
https://doi.org/10.5285/f5e3bd00-efd0-4dc6-a454-aa597d84764a
https://doi.org/10.5285/f5e3bd00-efd0-4dc6-a454-aa597d84764a
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.3897/BDJ.3.e5361
https://doi.org/10.3897/BDJ.3.e5361
https://doi.org/10.1111/2041-210X.13525
https://doi.org/10.1111/2041-210X.13525
https://doi.org/10.1111/biom.12670
https://doi.org/10.1080/10705511.2014.937378
https://doi.org/10.1080/00273171.2014.931799
https://doi.org/10.1080/00273171.2014.931799
https://ukpoms.org.uk/reports
https://www.protectedplanet.net/en/thematic-areas/wdpa
https://www.protectedplanet.net/en/thematic-areas/wdpa
https://doi.org/10.1016/S0169-7161(09)00223-5
https://doi.org/10.1016/S0169-7161(09)00223-5
https://doi.org/10.1093/jssam/smz003
https://doi.org/10.1093/jssam/smz003
https://doi.org/10.1007/978-3-319-93632-1
https://doi.org/10.1016/j.biocon.2022.109865
https://doi.org/10.1007/s10531-008-9491-4
https://doi.org/10.1073/pnas.1312779110
https://doi.org/10.1016/j.biocon.2020.108411
https://doi.org/10.1016/j.biocon.2020.108411
https://www.statcan.gc.ca/pub/12-001-x/2022002/article/00002-eng.htm
https://www.statcan.gc.ca/pub/12-001-x/2022002/article/00002-eng.htm
https://www.statcan.gc.ca/pub/12-001-x/2022002/article/00002-eng.htm
https://doi.org/10.1198/016214501750333054
https://doi.org/10.1002/ecy.4214
https://doi.org/10.1002/ecy.4214

	Descriptive inference using large, unrepresentative nonprobability samples: An introduction for ecologists
	INTRODUCTION
	METHODS
	True distribution of Calluna vulgaris
	Sample data on Calluna vulgaris occupancy
	Auxiliary data
	Estimating the per-period population mean
	The design-based estimator
	Estimators for nonprobability samples
	Naive sample mean
	Quasirandomization
	Poststratification
	Superpopulation modeling
	Doubly robust estimator
	Subsampling
	Multilevel regression and poststratification
	Confidence intervals

	Estimating the trend in mean occupancy
	Evaluating the effects of the adjustments

	RESULTS
	Per-period sample representativeness and estimated mean occupancy
	Estimated trend in mean occupancy
	Distributions of auxiliary variables

	DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


