112 research outputs found

    Remarks on 't Hooft's Brick Wall Model

    Get PDF
    A semi-classical reasoning leads to the non-commutativity of the space and time coordinates near the horizon of Schwarzschild black hole. This non-commutativity in turn provides a mechanism to interpret the brick wall thickness hypothesis in 't Hooft's brick wall model as well as the boundary condition imposed for the field considered. For concreteness, we consider a noncommutative scalar field model near the horizon and derive the effective metric via the equation of motion of noncommutative scalar field. This metric displays a new horizon in addition to the original one associated with the Schwarzschild black hole. The infinite red-shifting of the scalar field on the new horizon determines the range of the noncommutativ space and explains the relevant boundary condition for the field. This range enables us to calculate the entropy of black hole as proportional to the area of its original horizon along the same line as in 't Hooft's model, and the thickness of the brick wall is found to be proportional to the thermal average of the noncommutative space-time range. The Hawking temperature has been derived in this formalism. The study here represents an attempt to reveal some physics beyond the brick wall model.Comment: RevTeX, 5 pages, no figure

    Entanglement entropy in curved spacetimes with event horizons

    Get PDF
    We consider the computation of the entanglement entropy in curved backgrounds with event horizons. We use a Hamiltonian approach to the problem and perform numerical computations on a spherical lattice of spacing aa. We study the cosmological case and make explicit computations for the Friedmann-Robertson-Walker universe. Our results for a massless, minimally coupled scalar field can be summarized by Sent=0.30rH2/a2S_{ent}=0.30 r_H^2/a^2,which resembles the flat space formula, although here the horizon radius, rHr_H, is time-dependent.Comment: 12 pages, RevTex 3.0, 2 figures as uuencoded compressed Postscript file

    Black Hole Entropy without Brick Walls

    Get PDF
    We present evidence which confirms a suggestion by Susskind and Uglum regarding black hole entropy. Using a Pauli-Villars regulator, we find that 't Hooft's approach to evaluating black hole entropy through a statistical-mechanical counting of states for a scalar field propagating outside the event horizon yields precisely the one-loop renormalization of the standard Bekenstein-Hawking formula, S=\A/(4G). Our calculation also yields a constant contribution to the black hole entropy, a contribution associated with the one-loop renormalization of higher curvature terms in the gravitational action.Comment: 15 pages, plain LaTex minor additions including some references; version accepted for publicatio

    Euclidean Approach to the Entropy for a Scalar Field in Rindler-like Space-Times

    Get PDF
    The off-shell entropy for a massless scalar field in a D-dimensional Rindler-like space-time is investigated within the conical Euclidean approach in the manifold C_\be\times\M^N, C_\be being the 2-dimensional cone, making use of the zeta-function regularisation. Due to the presence of conical singularities, it is shown that the relation between the zeta-function and the heat kernel is non trivial and, as first pointed out by Cheeger, requires a separation between small and large eigenvalues of the Laplace operator. As a consequence, in the massless case, the (naive) non existence of the Mellin transform is by-passed by the Cheeger's analytical continuation of the zeta-function on manifold with conical singularities. Furthermore, the continuous spectrum leads to the introduction of smeared traces. In general, it is pointed out that the presence of the divergences may depend on the smearing function and they arise in removing the smearing cutoff. With a simple choice of the smearing function, horizon divergences in the thermodynamical quantities are recovered and these are similar to the divergences found by means of off-shell methods like the brick wall model, the optical conformal transformation techniques or the canonical path integral method.Comment: 17 pages, LaTex. A sign error corrected and few comments adde

    Two-dimensional Quantum-Corrected Eternal Black Hole

    Get PDF
    The one-loop quantum corrections to geometry and thermodynamics of black hole are studied for the two-dimensional RST model. We chose boundary conditions corresponding to the eternal black hole being in the thermal equilibrium with the Hawking radiation. The equations of motion are exactly integrated. The one of the solutions obtained is the constant curvature space-time with dilaton being a constant function. Such a solution is absent in the classical theory. On the other hand, we derive the quantum-corrected metric (\ref{solution}) written in the Schwarzschild like form which is a deformation of the classical black hole solution \cite{5d}. The space-time singularity occurs to be milder than in classics and the solution admits two asymptotically flat black hole space-times lying at "different sides" of the singularity. The thermodynamics of the classical black hole and its quantum counterpart is formulated. The thermodynamical quantities (energy, temperature, entropy) are calculated and occur to be the same for both the classical and quantum-corrected black holes. So, no quantum corrections to thermodynamics are observed. The possible relevance of the results obtained to the four-dimensional case is discussed.Comment: Latex, 28 pges; minor corrections in text and abstract made and new references adde

    Can the "brick wall" model present the same results in different coordinate representations?

    Full text link
    By using the 't Hooft's "brick wall" model and the Pauli-Villars regularization scheme we calculate the statistical-mechanical entropies arising from the quantum scalar field in different coordinate settings, such as the Painlev\'{e} and Lemaitre coordinates. At first glance, it seems that the entropies would be different from that in the standard Schwarzschild coordinate since the metrics in both the Painlev\'{e} and Lemaitre coordinates do not possess the singularity at the event horizon as that in the Schwarzschild-like coordinate. However, after an exact calculation we find that, up to the subleading correction, the statistical-mechanical entropies in these coordinates are equivalent to that in the Schwarzschild-like coordinate. The result is not only valid for black holes and de Sitter spaces, but also for the case that the quantum field exerts back reaction on the gravitational field provided that the back reaction does not alter the symmetry of the spacetime.Comment: 8 pages, Phys. Rev. D in pres

    On the Entropy of a Quantum Field in the Rotating Black Holes

    Get PDF
    By using the brick wall method we calculate the free energy and the entropy of the scalar field in the rotating black holes. As one approaches the stationary limit surface rather than the event horizon in comoving frame, those become divergent. Only when the field is comoving with the black hole (i.e. Ω0=ΩH\Omega_0 = \Omega_H) those become divergent at the event horizon. In the Hartle-Hawking state the leading terms of the entropy are A1h+Bln(h)+finite A \frac{1}{h} + B \ln(h) + finite, where hh is the cut-off in the radial coordnate near the horizon. In term of the proper distance cut-off ϵ\epsilon it is written as S=NAH/ϵ2 S = N A_H/\epsilon^2. The origin of the divergence is that the density of state on the stationary surface and beyond it diverges.Comment: Latex, 23 pages, 7 eps figure

    Higher order WKB corrections to black hole entropy in brick wall formalism

    Full text link
    We calculate the statistical entropy of a quantum field with an arbitrary spin propagating on the spherical symmetric black hole background by using the brick wall formalism at higher orders in the WKB approximation. For general spins, we find that the correction to the standard Bekenstein-Hawking entropy depends logarithmically on the area of the horizon. Furthermore, we apply this analysis to the Schwarzschild and Schwarzschild-AdS black holes and discuss our results.Comment: 21 pages, published versio

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review
    corecore