13 research outputs found

    The Physics of the B Factories

    Get PDF

    The BaBar detector: Upgrades, operation and performance

    Get PDF
    Contains fulltext : 121729.pdf (preprint version ) (Open Access

    Observation of CP violation in the B0 meson system

    Get PDF
    We present an updated measurement of time-dependent CP-violating asymmetries in neutral B decays with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. This result uses an additional sample of Upsilon(4S) decays collected in 2001, bringing the data available to 32 million B-anti-B pairs. We select events in which one neutral B meson is fully reconstructed in a final state containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay time distributions in such events. The result sin2beta = 0.59 +/- 0.14 (stat) +/- 0.05 (syst) establishes CP violation in the B^0 meson system. We also determine |lambda| = 0.93 +/- 0.09 {stat} +/- 0.03 {syst}, consistent with no direct CP violation.Comment: 8 pages, 2 figures, submitted to Physical Review Letter

    Beam Test Performance Studies of CMS Phase-2 Outer Tracker Module Prototypes

    No full text
    International audienceA new tracking detector will be installed as part of the Phase-2 upgrade of the CMS detector for the high-luminosity LHC era. This tracking detector includes the Inner Tracker, equipped with silicon pixel sensor modules, and the Outer Tracker, consisting of modules with two parallel stacked silicon sensors. The Outer Tracker front-end ASICs will be able to correlate hits from charged particles in these two sensors to perform on-module discrimination of transverse momenta pTp_\mathrm{T}. The pTp_\mathrm{T} information is generated at a frequency of 40 MHz and will be used in the Level-1 trigger decision of CMS. Prototypes of the so-called 2S modules were tested at the Test Beam Facility at DESY Hamburg between 2019 and 2020. These modules use the final front-end ASIC, the CMS Binary Chip (CBC), and for the first time the Concentrator Integrated Circuit (CIC), optical readout and on-module power conversion. In total, seven modules were tested, one of which was assembled with sensors irradiated with protons. An important aspect was to show that it is possible to read out modules synchronously. A cluster hit efficiency of about 99.75% was achieved for all modules. The CBC pTp_\mathrm{T} discrimination mechanism has been verified to work together with the CIC and optical readout. The measured module performance meets the requirements for operation in the upgraded CMS tracking detector

    Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons

    No full text
    International audienceHigh-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating also reductions in the material budget of the detectors. Traditionally, the fractional radiation length (x/X0x/X_0) of detectors is either estimated using known properties of the constituent materials, or measured in dedicated runs of the final detector. In this paper, we present a method of direct measurement of the material budget of a CMS prototype module designed for the Phase-2 upgrade of the CMS detector using a 40-65 MeV positron beam. A total of 630 million events were collected at the Paul Scherrer Institut PiE1 experimental area using a three-plane telescope consisting of the prototype module as the central plane, surrounded by two MALTA monolithic pixel detectors. Fractional radiation lengths were extracted from scattering angle distributions using the Highland approximation for multiple scattering. A statistical technique recovered runs suffering from trigger desynchronisation, and several corrections were introduced to compensate for local inefficiencies related to geometric and beam shape constraints. An overall average x/X0x/X_0 of (0.84 ±\pm 0.10)% across the surveyed regions was measured, which is compatible with an empirical estimate of 0.825% computed from known material properties. Higher-granularity maps of the fractional radiation length were produced for both rectangular regions and regions of uniform material composition. The results bode well for the CMS Phase-2 upgrade modules, which will play a key role in the minimisation of the material budget of the upgraded detector
    corecore