1,507 research outputs found

    Synthesis from Recursive-Components Libraries

    Full text link
    Synthesis is the automatic construction of a system from its specification. In classical synthesis algorithms it is always assumed that the system is "constructed from scratch" rather than composed from reusable components. This, of course, rarely happens in real life. In real life, almost every non-trivial commercial software system relies heavily on using libraries of reusable components. Furthermore, other contexts, such as web-service orchestration, can be modeled as synthesis of a system from a library of components. In 2009 we introduced LTL synthesis from libraries of reusable components. Here, we extend the work and study synthesis from component libraries with "call and return"' control flow structure. Such control-flow structure is very common in software systems. We define the problem of Nested-Words Temporal Logic (NWTL) synthesis from recursive component libraries, where NWTL is a specification formalism, richer than LTL, that is suitable for "call and return" computations. We solve the problem, providing a synthesis algorithm, and show the problem is 2EXPTIME-complete, as standard synthesis.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Search for the exotic Θ+\Theta^+ resonance in the NOMAD experiment

    Get PDF
    A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the NOMAD muon neutrino DIS data is reported. The special background generation procedure was developed. The proton identification criteria are tuned to maximize the sensitivity to the Theta signal as a function of xF which allows to study the Theta production mechanism. We do not observe any evidence for the Theta state in the NOMAD data. We provide an upper limit on Theta production rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal

    A Precise Measurement of the Muon Neutrino-Nucleon Inclusive Charged Current Cross-Section off an Isoscalar Target in the Energy Range 2.5 < E_\nu < 40 GeV by NOMAD

    Get PDF
    We present a measurement of the muon neutrino-nucleon inclusive charged current cross-section, off an isoscalar target, in the neutrino energy range 2.5Eν402.5 \leq E_\nu \leq 40 GeV. The significance of this measurement is its precision, ±4\pm 4% in 2.5Eν102.5 \leq E_\nu \leq 10 GeV, and ±2.6\pm 2.6% in 10Eν4010 \leq E_\nu \leq 40 GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.Comment: 14 pages, 3 figures, submitted to Phys.Lett.

    A Measurement of Coherent Neutral Pion Production in Neutrino Neutral Current Interactions in NOMAD

    Get PDF
    We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to 1.44×1061.44 \times 10^6 muon-neutrino Charged Current interactions in the energy range 2.5Eν3002.5 \leq E_{\nu} \leq 300 GeV. Neutrino events with only one visible π0\pi^0 in the final state are expected to result from two Neutral Current processes: coherent π0\pi^0 production, {\boldmath ν+Aν+A+π0\nu + {\cal A} \to \nu + {\cal A} + \pi^0} and single π0\pi^0 production in neutrino-nucleon scattering. The signature of coherent π0\pi^0 production is an emergent π0\pi^0 almost collinear with the incident neutrino while π0\pi^0's produced in neutrino-nucleon deep inelastic scattering have larger transverse momenta. In this analysis all relevant backgrounds to the coherent π0\pi^0 production signal are measured using data themselves. Having determined the backgrounds, and using the Rein-Sehgal model for the coherent π0\pi^0 production to compute the detection efficiency, we obtain {\boldmath 4630±522(stat)±426(syst)4630 \pm 522 (stat) \pm 426 (syst)} corrected coherent-π0\pi^0 events with Eπ00.5E_{\pi^0} \geq 0.5 GeV. We measure {\boldmath σ(νAνAπ0)=[72.6±8.1(stat)±6.9(syst)]×1040cm2/nucleus\sigma (\nu {\cal A} \to \nu {\cal A} \pi^0) = [ 72.6 \pm 8.1(stat) \pm 6.9(syst) ] \times 10^{-40} cm^2/nucleus}. This is the most precise measurement of the coherent π0\pi^0 production to date.Comment: 23 pages, 9 figures, accepted for publication in Phys. Lett.

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl

    Measurement of the Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2β\beta measurement from B0J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0J/ψKS0)=(1.83±0.28)×105BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Final NOMAD results on nu_mu->nu_tau and nu_e->nu_tau oscillations including a new search for nu_tau appearance using hadronic tau decays

    Full text link
    Results from the nu_tau appearance search in a neutrino beam using the full NOMAD data sample are reported. A new analysis unifies all the hadronic tau decays, significantly improving the overall sensitivity of the experiment to oscillations. The "blind analysis" of all topologies yields no evidence for an oscillation signal. In the two-family oscillation scenario, this sets a 90% C.L. allowed region in the sin^2(2theta)-Delta m^2 plane which includes sin^2(2theta)<3.3 x 10^{-4} at large Delta m^2 and Delta m^2 < 0.7 eV^2/c^4 at sin^2(2theta)=1. The corresponding contour in the nu_e->nu_tau oscillation hypothesis results in sin^2(2theta)<1.5 x 10^{-2} at large Delta m^2 and Delta m^2 < 5.9 eV^2/c^4 at sin^2(2theta)=1. We also derive limits on effective couplings of the tau lepton to nu_mu or nu_e.Comment: 46 pages, 16 figures, Latex, to appear on Nucl. Phys.

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Measurement of the CP-violating phase \phi s in Bs->J/\psi\pi+\pi- decays

    Get PDF
    Measurement of the mixing-induced CP-violating phase phi_s in Bs decays is of prime importance in probing new physics. Here 7421 +/- 105 signal events from the dominantly CP-odd final state J/\psi pi+ pi- are selected in 1/fb of pp collision data collected at sqrt{s} = 7 TeV with the LHCb detector. A time-dependent fit to the data yields a value of phi_s=-0.019^{+0.173+0.004}_{-0.174-0.003} rad, consistent with the Standard Model expectation. No evidence of direct CP violation is found.Comment: 15 pages, 10 figures; minor revisions on May 23, 201

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex
    corecore