129 research outputs found

    Yukawa structure, flavour and CP violation in Supergravity

    Get PDF
    The hierarchical structure of fermion masses and mixings strongly suggests an underlying family symmetry. In supergravity any familon field spontaneously breaking this symmetry necessarily acquires an F-term which contributes to the soft trilinear couplings. We show, as a result, mu -> e gamma decay can receive large contributions from this source at the level of current experimental bounds and thus this channel may provide the first indication of supersymmetry and a clue to the structure of the soft breaking sector. Using the mercury EDM bounds we find strong bounds on the right handed down quark mixing angles that are inconsistent with models relating them to neutrino mixing angles and favour a near-symmetric form for the magnitude of the down quark mass matrix.Comment: Final version to appear in PRD. Improved discusion of several points, updated references, typos correcte

    Diffuse Cosmic Neutrino Background from Population III Stars

    Full text link
    We study the expected diffuse cosmic neutrino flux produced by Population III (PopIII) stars during their nuclear burning phases as well as from their final stages of evolution (core collapse). Assuming a fraction f_III=10^(-3) of all baryons forms PopIII stars, our flux estimate is comparable to the diffuse neutrino flux produced by the ordinary stars and by the ordinary core-collapse supernovae in the universe, i.e. of order 1-10 cm^(-2) s^(-1). Due to the large cosmic redshift, however, the typical energies are in the MeV and sub-MeV range where the solar and geophysical neutrino fluxes are much larger. A direct detection of the diffuse cosmic flux is out of the question with presently known experimental techniques.Comment: 17 pages, 7 figure

    Collider signals from slow decays in supersymmetric models with an intermediate-scale solution to the mu problem

    Get PDF
    The problem of the origin of the mu parameter in the Minimal Supersymmetric Standard Model can be solved by introducing singlet supermultiplets with non-renormalizable couplings to the ordinary Higgs supermultiplets. The Peccei-Quinn symmetry is broken at a scale which is the geometric mean between the weak scale and the Planck scale, yielding a mu term of the right order of magnitude and an invisible axion. These models also predict one or more singlet fermions which have electroweak-scale masses and suppressed couplings to MSSM states. I consider the case that such a singlet fermion, containing the axino as an admixture, is the lightest supersymmetric particle. I work out the relevant couplings in several of the simplest models of this type, and compute the partial decay widths of the next-to-lightest supersymmetric particle involving leptons or jets. Although these decays will have an average proper decay length which is most likely much larger than a typical collider detector, they can occasionally occur within the detector, providing a striking signal. With a large sample of supersymmetric events, there will be an opportunity to observe these decays, and so gain direct information about physics at very high energy scales.Comment: 24 pages, LaTeX, 4 figure

    Flavour issues for string-motivated heavy scalar spectra with a low gluino mass: the G2-MSSM case

    Full text link
    In recent years it has been learned that scalar superpartner masses and trilinear couplings should both generically be larger than about 20 TeV at the short distance string scale if our world is described by a compactified string or M-theory with supersymmetry breaking and stabilized moduli. Here we study implications of this, somewhat generally and also in detail for a particular realization (compactification of M-theory on a G_2 manifold) where there is significant knowledge of the superpotential and gauge kinetic function, and a light gluino. In a certain sense this yields an ultraviolet completion of minimal flavour violation. Flavour violation stems from off-diagonal and non-universal diagonal elements of scalar mass matrices and trilinear couplings, and from renormalization group running. We also examine stability bounds on the scalar potential. While heavy scalars alone do not guarantee the absence of flavour problems, our studies show that models with heavy scalars and light gluinos can be free from such problems.Comment: 22 pages + references, 5 figures; v2: corrected calculation of epsilon_K (SUSY contribution is always harmless), improved presentation, added references; v3: further minor improvements, matches version to appear in EPJ

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review

    Baryogenesis in Models with a Low Quantum Gravity Scale

    Get PDF
    We make generic remarks about baryogenesis in models where the scale MsM_s of quantum gravity is much below the Planck scale. These correspond to M-theory vacua with a large volume for the internal space. Baryogenesis is a challenge, particularly for M_s \lappeq 10^5 GeV, because there is an upper bound on the reheat temperature of the Universe, and because certain baryon number violating operators must be suppressed. We discuss these constraints for different values of MsM_s, and illustrate with a toy model the possibility of using horizontal family symmetries to circumvent them.Comment: 15 pages, latex, one figure. References adde

    Transverse momentum spectra of charged particles in proton-proton collisions at s=900\sqrt{s} = 900 GeV with ALICE at the LHC

    Get PDF
    The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at s=900\sqrt{s} = 900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (η<0.8)(|\eta|<0.8) over the transverse momentum range 0.15<pT<100.15<p_{\rm T}<10 GeV/cc. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for η<0.8|\eta|<0.8 is <pT>INEL=0.483±0.001\left<p_{\rm T}\right>_{\rm INEL}=0.483\pm0.001 (stat.) ±0.007\pm0.007 (syst.) GeV/cc and \left_{\rm NSD}=0.489\pm0.001 (stat.) ±0.007\pm0.007 (syst.) GeV/cc, respectively. The data exhibit a slightly larger <pT>\left<p_{\rm T}\right> than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.Comment: 20 pages, 8 figures, 2 tables, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/390

    Differentiating Sexual Aggressives With Penile Measures

    No full text

    Considerations on Fantasy Use by Child Molesters and Exhibitionists

    No full text
    corecore