1,323 research outputs found

    Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis)

    Get PDF
    Season clearly influences oocyte competence in buffalo (Bubalus bubalis); however, changes in the oocyte molecular status in relation to season are poorly understood. This study characterizes the microRNA (miRNA) and transcriptomic profiles of oocytes (OOs) and corresponding follicular cells (FCs) from buffalo ovaries collected in the breeding (BS) and non-breeding (NBS) seasons. In the BS, cleavage and blastocyst rates are significantly higher compared to NBS. Thirteen miRNAs and two mRNAs showed differential expression (DE) in FCs between BS and NBS. DE-miRNAs target gene analysis uncovered pathways associated with transforming growth factor \u3b2 (TGF\u3b2) and circadian clock photoperiod. Oocytes cluster in function of season for their miRNA content, showing 13 DE-miRNAs between BS and NBS. Between the two seasons, 22 differentially expressed genes were also observed. Gene Ontology (GO) analysis of miRNA target genes and differentially expressed genes (DEGs) in OOs highlights pathways related to triglyceride and sterol biosynthesis and storage. Co-expression analysis of miRNAs and mRNAs revealed a positive correlation between miR-296-3p and genes related to metabolism and hormone regulation. In conclusion, season significantly affects female fertility in buffalo and impacts on oocyte transcriptomic of genes related to folliculogenesis and acquisition of oocyte competence

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure

    Changes in photosynthetic capacity, carboxylation efficiency, and CO 2 compensation point associated with midday stomatal closure and midday depression of net CO 2 exchange of leaves of Quercus suber

    Full text link
    The carbon-dioxide response of photosynthesis of leaves of Quercus suber , a sclerophyllous species of the European Mediterranean region, was studied as a function of time of day at the end of the summer dry season in the natural habitat. To examine the response experimentally, a “standard” time course for temperature and humidity, which resembled natural conditions, was imposed on the leaves, and the CO 2 pressure external to the leaves on subsequent days was varied. The particular temperature and humidity conditions chosen were those which elicited a strong stomatal closure at midday and the simultaneous depression of net CO 2 uptake. Midday depression of CO 2 uptake is the result of i) a decrease in CO 2 -saturated photosynthetic capacity after light saturation is reached in the early morning, ii) a decrease in the initial slope of the CO 2 response curve (carboxylation efficiency), and iii) a substantial increase in the CO 2 compensation point caused by an increase in leaf temperature and a decrease in humidity. As a consequence of the changes in photosynthesis, the internal leaf CO 2 pressure remained essentially constant despite stomatal closure. The effects on capacity, slope, and compensation point were reversed by lowering the temperature and increasing the humidity in the afternoon. Constant internal CO 2 may aid in minimizing photoinhibition during stomatal closure at midday. The results are discussed in terms of possible temperature, humidity, and hormonal effects on photosynthesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47468/1/425_2004_Article_BF00397440.pd

    Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance

    Full text link
    We have made a first measurement of the lepton momentum spectrum in a sample of events enriched in neutral B's through a partial reconstruction of B0 --> D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the Upsilon(4S) resonance by the CLEO II detector, is compared directly to the inclusive lepton spectrum from all Upsilon(4S) events in the same data set. These two spectra are consistent with having the same shape above 1.5 GeV/c. From the two spectra and two other CLEO measurements, we obtain the B0 and B+ semileptonic branching fractions, b0 and b+, their ratio, and the production ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950 (+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57 +- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes, tau+/tau0.Comment: 14 page, postscript file also available at http://w4.lns.cornell.edu/public/CLN

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Search for Doubly-Charged Higgs Boson Production at HERA

    Get PDF
    A search for the single production of doubly-charged Higgs bosons H^{\pm \pm} in ep collisions is presented. The signal is searched for via the Higgs decays into a high mass pair of same charge leptons, one of them being an electron. The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment at HERA. No evidence for doubly-charged Higgs production is observed and mass dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only decays into an electron and a muon via a coupling of electromagnetic strength h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3, masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Effects of temperature at constant air dew point on leaf carboxylation efficiency and CO 2 compensation point of different leaf types

    Full text link
    The effect of temperature on photosynthesis at constant water-vapor pressure in the air was investigated using two sclerophyll species, Arbutus unedo and Quercus suber , and one mesophytic species, Spinacia oleracea . Photosynthesis and transpiration were measured over a range of temperatures, 20–39° C. The external concentration of CO 2 was varied from 340 μbar to near CO 2 compensation. The initial slope (carboxylation efficiency, CE) of the photosynthetic response to intercellular CO 2 concentration, the CO 2 compensation point (Γ), and the extrapolated rate of CO 2 released into CO 2 -free air ( R i ) were calculated. At an external CO 2 concentration of 320–340 μbar CO 2 , photosynthesis decreased with temperature in all species. The effect of temperature on Γ was similar in all species. While CE in S. oleracea changed little with temperature, CE decreased by 50% in Q. suber as temperature increased from 25 to 34° C. Arbutus unedo also exhibited a decrease in CE at higher temperatures but not as marked as Q. suber . The absolut value of R i increased with temperature in S. oleracea , while changing little or decreasing in the sclerophylls. Variations in Γ and R i of the sclerophyll species are not consistent with greater increase of respiration with temperature in the light in these species compared with S. oleracea .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47470/1/425_2004_Article_BF00397389.pd
    corecore