497 research outputs found
knowledge spillovers congestion effects and long run location patterns
We introduce an evolutionary two-country model to characterize long run location patterns of the manufacturing activities of competing multinational enterprises. Firms located in country 1 can decide to offshore their manufacturing activities to country 2. The profitability of production in a country depends on several factors: unitary costs of production, the number of firms that are located in each country, within-country spillovers, and cross-border spillovers. Furthermore, profits in country 2 are influenced by congestion costs. Country 1 is assumed to be technologically advanced and has an advantage in terms of internal spillovers. In contrast, country 2 offers lower production unit cost which, however, may be offset by congestion costs. The firms' (re)location choices are based on a simple comparison of current production costs obtained in the two countries and the dynamics of switching is modeled by a simple replicator dynamics. The global analysis of the resulting one-dimensional dynamical system reveals that a large advantage in terms of unitary production costs encourages the firms to off-shore manufacturing activities to country 2. This off-shoring process stops when congestion costs offset this advantage of country 2, even though congestion costs do not cause all manufacturing activities to be re-shored to country 1. The re-shoring process can be accelerated by an increase of within-country spillovers in country 1, while cross-border spillovers tend to favor a geographic dispersion of manufacturing activities and make location patterns that lead to suboptimal long run outcomes less likely
Recommended from our members
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of âŒ10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run
Recommended from our members
Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates âȘ100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index âČ2
Modeling house price dynamics with heterogeneous speculators
This paper investigates the impact of speculative behavior on house price dynamics. Speculative demand for housing is modeled using a heterogeneous agent approach, whereas ârealâ demand and housing supply are represented in a standard way. Together, real and speculative forces determine excess demand in each period and house price adjustments. Three alternative models are proposed, capturing in different ways the interplay between fundamental trading rules and extrapolative trading rules, resulting in a 2D, a 3D, and a 4D nonlinear discretetime dynamical system, respectively. While the destabilizing effect of speculative behavior on the modelâs steady state is proven in general, the three specific cases illustrate a variety of situations that can bring about endogenous dynamics, with lasting and significant price swings around the âfundamental â price, as we have seen in many real markets
Modeling the role of constant and time varying recycling delay on an ecological food chain
summary:We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the daily variation in nutrient recycling and deduce the stability criteria of the variable delay model. A comparison of the variable delay model with the constant delay one is performed to unearth the biological relevance of oscillating delay in some real world ecological situations. Numerical simulations are done in support of analytical results
Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light
Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometerâs dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1ââdB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%â8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded
Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector
The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise
- âŠ