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Desynchronization of chaos in coupled logistic maps
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2Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
(Received 22 January 1999

When identical chaotic oscillators interact, a state of complete or partial synchronization may be attained in
which the motion is restricted to an invariant manifold of lower dimension than the full phase space. Riddling
of the basin of attraction arises when particular orbits embedded in the synchronized chaotic state become
transversely unstable while the state remains attracting on the average. Considering a system of two coupled
logistic maps, we show that the transition to riddling will be soft or hard, depending on whether the first orbit
to lose its transverse stability undergoes a supercritical or subcritical bifurcation. A subcritical bifurcation can
lead directly to global riddling of the basin of attraction for the synchronized chaotic state. A supercritical
bifurcation, on the other hand, is associated with the formation of a so-called mixed absorbing area that
stretches along the synchronized chaotic state, and from which trajectories cannot escape. This gives rise to
locally riddled basins of attraction. We present three different scenarios for the onset of riddling and for the
subsequent transformations of the basins of attraction. Each scenario is described by following the type and
location of the relevant asynchronous cycles, and determining their stable and unstable invariant manifolds.
One scenario involves a contact bifurcation between the boundary of the basin of attraction and the absorbing
area. Another scenario involves a long and interesting series of bifurcations starting with the stabilization of the
asynchronous cycle produced in the riddling bifurcation and ending in a boundary crisis where the stability of
an asynchronous chaotic state is destroyed. Finally, a phase diagram is presented to illustrate the parameter
values at which the various transitions ocd81063-651X99)04509-2

PACS numbd(s): 05.45-a

[. INTRODUCTION same way, the synchronized chaotic state will be restricted to
a smooth invariant manifold of lower dimension than the full
Interacting chaotic oscillators are of interest in connectiorphase space. A similar situation can also arise in nonlinear
with a wide range of problems in science and technolddy = dynamic systems with built-in symmetri¢$0,11. A main
In the biological sciences, for instance, one of the fundamenproblem is then related to the stability of the synchronized
tal problems is to understand how a group of cells or func-state to perturbations transverse to the synchronization mani-
tional units, each displaying complicated nonlinear dynamfold. Another important question concerns what happens
ics, can interact with one another to produce different formavhen the synchronization breaks down. Recent studies of
of coordinated function at a higher organizational le\&| these and related problems have lead to the discovery of a
Studies performed by a number of investigators have disvariety of new phenomena, includirgddled basins of at-
closed how chaotic interaction can lead to a variety of dif-traction[10,11], attractor bubbling[12], andon-off intermit-
ferent synchronization phenomena.dnase synchronization tency[13,14].
[3,4], for instance, the interacting chaotic systems adjust Riddled basins of attraction may be observed in regions of
their phases such that the mean return times to some Poiparameter space where the synchronized chaotic state is at-
caresecant are related in a rational manner. The amplitudestacting on the averagghe typical transverse Lyapunov ex-
on the other hand, can vary quite differentijull synchro-  ponents are negatiyewhile at the same time particular or-
nization in which both the phases and amplitudes develop irbits embedded in the chaotic set are transversely unstable
precisely the same way, can be achieved through the couthe corresponding eigenvalues are numerically larger that
pling of two (or more identical oscillatorg5]. In the pres- one [11,12. The basin of attraction for the synchronized
ence of a parameter mismatch between the chaotic systenthaotic state may then become a fat fractal, riddled with
lag synchronizatiormay be observedl6]. Here the ampli- initial conditions from which the trajectories diverge toward
tudes of the two subsystems are correlated, but there is iafinity or approach other asymptotic states. The transition in
phase shift between their motions. Finally, if more than twowhich the first orbit on the chaotic set becomes transversely
oscillators are involved, one may observe the phenomenon afnstable is referred to as the riddling bifurcation. For a sys-
clustering[7] or partial synchronizatiori8], where some of tem of two coupled one-dimensional maps, this bifurcation
the oscillators synchronize and others do not. This is oftemmay be either a pitchfork bifurcatidieigenvaluet1) [15] or
associated with the coexistence of a number of different syna period-doubling bifurcatiofeigenvalue—1) [16].
chronized states, each with its own basin of attraction. However, transverse destabilization of orbits embedded in
Full synchronization is of interest in connection, for in- the chaotic set is not sufficient for an observable riddling to
stance, with the development of new types of communicatiomrise. This will depend on the global dynamics of the system.
techniques that exploit the possibility of masking a messageélaving left the locally repelling regions in the neighborhood
by mixing it with a chaotic signal9]. With both the ampli- of the chaotic set, the trajectories may wander around in
tudes and phases of the interacting oscillators varying in thphase space without ever approaching another attréstor
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escaping to infinity. Sooner or later most of them will return As the asynchronous saddle cyeleunder variation of a

to the neighborhood of the synchronization manifold. Somecontrol parameter moye away from the synchronization
may again be mapped into repelling tongues, while othergnanifold, the width of the mixed absorbing area will grow.
will be attracted by the chaotic set, and at the end almost allhis _leads to a synchronization error that increases as
trajectories starting close to the invariant manifold will end V|e—&.|. Here|e —&¢/<1 denotes the distance of the con-
up in the synchronized state. This produces the phenomendfp! parameter from the bifurcation point.

that has been callddcal riddling[12,16,17. In the presence ~ As opposed to the distinction between locally and glo-
of noise, a locally riddled basin of attraction will manifest bally riddled basins of attraction, the distinction between soft

itself in the form of attractor bubblinfl2,18, where inter- and hard riddling bifurcations only involves local conditions
vals of desynchronized bursting behavior occur. close to the synchronization manifold. A hard riddling bifur-
Denoting the synchronized chaotic statefyjits & neigh- cation may lead to locally or globally riddled basins of at-

borhood byU 4(A), and its basin of attraction bg(A), the tr_acti_on, dep_ending on the conditions far from _the syr_lchro-
basin is said to be locally riddled if there existdauch that ~Nization manifold. As we shall show, however, immediately
A aftracts almost all points from UsA), ie., after a soft riddling bifurcation, the basin of attraction can be

wIB(AYNU 5(A)} = U 5(A)}, where u{-} denotes a Le- locally riddied only. o

besgue measure. In contrast to the case of asymptotic stabil- 1 1€ Purpose of the present paper is to illustrate these con-
ity, however, the transverse repulsive character of orbits em€PtS in more detail by describing three different scenarios
bedded in the synchronized chaotic set implies that thdo" the onset of riddling and for the subsequent development
neighborhood of any point o& will contain a positive mea- of the basin of attraction for a system of two coupled logistic

sure set of points that leavd s(A) in a finite number of ~Maps: Each scenario is described by following the type and
; ; location of the relevant asynchronous cycles and determine
iterations.

Alternatively, the global dynamics of the system may betheir stable and unstable invariant manifolds. We also deter-

such that it allows direct access for trajectories repelled fronfin€ both the absorbing and mixed absorbing areas, and dis-
the neighborhood of the transversely destabilized ofst CUSS their significance for the observed dynamics. The first
well as from the neighborhoods of its dense set of IOreim_scenario illustrates how the transition from locally to glo-
ages to go to some other attractdor infinity). This is the bally riddled basins of attraction can occur viacantact
case ofglobal riddling. A then attracts a positive Lebesgue Pifurcation between the basin of attraction for the synchro-
measure set of points frotd s(A), but not the full measure, NiZ€d chaotic state and its absorbing ar@,21. The sec-
i.e., 0< ulB(A)NU (A)} < ulU 5(A)}. We have previously ond scenario involves a direct transition to global riddling
described[16,17] how the distinction between these two following a subcritical transverse bifurcation of a synchro-
types of riddling for a system of two coupled, noninvertible mz_ed periodic Ol’bl't. In thls_case,.the mixed absorbing area
maps depends on the existence of a so-caltebrbing area exists before the riddling bifurcation, and disappears in the
[19,20) that controls the global dynamics of the system, andnoment of bifurcation.

can restrain trajectories starting near the synchronized cha- The third_scengrio involve; a long and .i.nter.esting se-
otic set from reaching other limiting states. quence of bifurcations following the destabilization of the

The bubbling transition itself may be characterized as be_synchronqus perioq-Z cycle in a supercritical transverse pe-
ing either soft or hard. This distinction was introduced by "0d doubling. In this case, the asynchronous period-4 saddle

Venkataramanét al.[18] to describe two different situations Produced in the riddling bifurcation stabilizes in an inverse
that can be observed immediately after the first orbit has logfuPcritical period-doubling bifurcation before the contact bi-
its transverse stability. After a soft transition, trajectories Urcation between the basin of attraction and the absorbing

starting in the neighborhood of the synchronization manifold®'€2 tgkes plaqe. This gives risg to the emergence of a new
will remain close to this manifold. After a hard transition, on 2tracting state inside the absorbing area for the synchronized

the other hand, trajectories starting close to the synchroniz&haotic set. Elements of this scenario were recently described
tion manifold can immediately move far away in phaseby Bischi and Gardinf22]. Finally, we present a phase dia-

space, and some may approach other attractors. We had&am delineating the regions in parameter space where the

recently showrj21] how the distinction between a soft and a vario_u_s solutions e>_<ist. This provi_des a clear picture of the
hard riddling bifurcation is related to the supercritical or sub-conditions for the different scenarios to occur.

critical nature of the transverse bifurcation in which the first

orbit embedded in the synchronized chaotic set loses its sta- 1. CONDITIONS FOR SOFT AND HARD RIDDLING

bility. At the same time we have established general analyti-
cal conditions for the transverse bifurcation of a periodic
orbit to be either supercritical or subcritical. This derivation
was based on the construction of an asymptotical one- F-[X] _)[ fa(x)+e(y—x)] 2.1)
dimensional map acting along the transverse invariant mani- y fa(y) +e(x=y) '

folds of the orbit that first loses its stability. In a supercritical

transverse destabilization of a periodic orbit, the unstabl@f two symmetrically coupled logistic mapk,(x)=ax(1
manifolds of the asynchronous saddle cy®léoorn in the  —Xx) with 3<as4 and—2<g¢=<2. Itis well known that the
bifurcation (together with elements of the boundary of the logistic mapf,(x) for a>a*=3.567 ... (the Feigenbaum
absorbing areawill form a so-calledmixed absorbing area accumulation point undergoes a reverse cascade of ho-
that stretches along the synchronized chaotic set, and fromoclinic bifurcations of period-2 cycles at the parameter
which trajectories starting near the chaotic set cannot escapealuesa,,. At a=a,=3.67858B. .., forinstance, the fixed

Let us consider the system
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point Xo=1—1/a undergoes its first homoclinic bifurcation, In the parameter interval of interest, the symmetric
and two chaotic bands merge into a single band. Likewiseperiod-2 cycle is unstable in the direction of the longitudinal
for a=a,=3.59252. .., theperiod-2 cycle undergoes its manifoldW,={x=y}. The cycle loses its transverse stability
first homoclinic bifurcation, and four chaotic bands mergeeither in a pitchfork bifurcation#, =1) for
into two. At each of these homoclinic bifurcation points,
fa(x) has a finite number of intervals with an absolutely e=—3[1%(a+1)(a—3)+1] (2.6
continuous invariant measure. Hence the dynamics, ©f)
is chaotic. The main diagongk=y} is a one-dimensional
synchronization manifold foF. 1
In order to delineate the regions of parameter space in e=—3[1=\(at+1)(a-3)-1]. (2.7)

which the synchronized chaotic state is asymptotically To investigate how mag2.1) acts along the transverse

stable, we have previously considered the transverse stability, ., \i¢t51dsW. . we rewrite E in terms of the new variables
for each of the most important low-periodic point cyches £=(x+y)l2 lalndnz(y—x)lz

[16]. For a=a, we have found that the interval of

asymptotic stability is bounded by a transverse period- ~ [ € f(&)—an?
doubling bifurcation of the period-6 cycle at=—1.31 and 2[ n]_)[(f’(f)—ZS)n]’
by a transverse period-doubling of the period-2 cycle: at

=—1.24. Fora=a,, the interval of asymptotic stability for where, as beforef=f,. The term transverse manifold is
the synchronized chaotic state stretches from—1.46 to  meant to denote the manifold in which the asynchronous
e=—1.16, with both the upper and the lower end being ascycle(s) involved in the bifurcation igare situated. In the
sociated with a destabilization of the period-2 cycle. Theneighborhood of each period-2 cycle poftwe can expand
transverse destabilization of the fixed point is not associatethe one-dimensional manifoldsV, ;={(¢,7):&é=¢i(7n)}

or in a period-doubling bifurcationy, = —1) for

(2.9

with any riddling bifurcation in our model. such that
Let us examine the bifurcations in which the period-2
cycle @i(7)=x;+B;»?+ (higher order terms (2.9
a+tl+(a+1)(a—23) Linear contributions tap; vanish becaus®V, ; is parallel to
X1,2=Y1,2= a (2.2 the paxis for »=0.

The coefficientd8; may be obtained by inserting E@®.9)
loses its transverse stability. Results for cycles of arbitrarynto Eqg.(2.8), and using the invariance &, ;. This gives
periodicity can be found in Ref21]. The mapF: R?>—R? is 5 5
noninvertible, and it is easy to see that the Jacobian determi- Bi=alwirat vl il(y—v), (210
nant |[DF| vanishes along two branches of a hyperbahe

so-called critical curvefl9,20) where vy =1'(x)), v, i=1"(x)=2e, and xi.;=f(x)).

From Eq.(2.10), B; can be calculated provided that the sec-
a—¢ &2 ond nonresonant condition,#v? is satisfied. This condi-
Lo=] (Xy)y=—_-+ (2.3 tion, which guarantees th@&> smoothness ofV,;, will al-
ways be fulfilled sincey;<<0 in the chaotic regima>a*.
The one-dimensional mappirg:W, ;— W, ; of F2 along
the transverse manifolds of the period-2 cycle takes the
asymptotic form

a—
X— ———

2
4a >a

that intersect the diagong&k=y} in the pointsx.;=1/2 and
Xeo=1/2—/ela. It follows thatF is a diffeomorphism in a

neighborhood of the point8; (i=1 and 2 of the symmetric PN .3 ;
period-2 cycle, provided thata#1+\5 and a#1 Niig— v+ Gyt (higher order terms (2.1
+ 4+ (1+2¢)?. These provisions also imply that #0 Quadratic terms do not arise in this expansion because of
andv, #0, where the symmetry of the system. Inserting E@-11 into Eq.
(2.8) and using our resulte2.10 for B; we obtain
y=f'(x)f' (x)=1-(a+1)(a=3) (2.4
and Cm 222 (V2 + VH,i+l)(VL,i2+l+ ViV i) v

v—vy

v, =(f'(x1)—2e)(f'(x,)—2e)=(1+2¢)’—(a+1)(a—23) -

29 It is well known from normal form theory that the bifur-
are the longitudinal and transverse eigenvalues for theations of the symmetric one-dimensional miapwill be
period-2 cyclef’(x) denotes the derivative df(x). More-  supercritical or subcritical depending on the sign of the prod-
over, fore#0 ande# —1, the first nonresonant condition uct v, C;. (Obviously, C; must have the same sign for the
v,# v, will be satisfied. For each of the two poirfis on the  two transverse manifoldslf v, C;<0, the bifurcation is su-
period-2 cycle a neighborhood will then exist in which the percritical, and it is subcritical for, C;>0. Direct calcula-
transverse invariant manifold#/, ; are at leastC* smooth  tion shows thaC; is positive in the relevant parameter inter-
[23]. Invariance in this case obviously applies with respect toval. Hence we conclude that the transverse pitchfork
the iterated mayr>. bifurcation of the symmetric period-2 cycle occurringat
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n
-0.4
-1.
(a)
. . . . 1.1 ==
FIG. 1. Region of transverse stability for the symmetric period-2 P4
cycle. Destabilization occurs via a subcritical pitchfork bifurcation
(lower curve or via a supercritical period-doubling bifurcatidmp- P2
per curve. Stability regions for other low-periodic cycles may be
found in Ref.[16]. For our discussion of chaotic synchronization,
nly the regiona>a*=3.569 is of interest.
only the regiona>a*=3.569 is of interest y P4 A \
=—1[1+J(a+1)(a—3)+1] is subcritical, and the trans-
verse period-doubling occurring at e=—3[1
+(a+1)(a—3)—1] is supercritical. As an illustration to = P,
this discussion, Fig. 1 shows the region in parameter space in ¢
which the symmetric period-2 cycle is transversely stable.
This region is delineated by the curves6) and(2.7) along
which the subcritical pitchfork and the supercritical period-
doubling bifurcations take place. In the intervaka<1 0.0
+ /6, synchronization of the period-2 cycle occurs for arbi- (b) 0.0 X L1
trary small values of the coupling parameter. This is the in- _ ) ) N
terval in which the period-2 cycle,=f(x;), x;=f(x,) is FIG. 2. (a) Bifurcation diagram for the supercritical transverse

period-doubling bifurcations of the symmetric period-2 cycle.
gorresponding phase portrait showing how the position of the
period-4 saddleR,) varies as the coupling parameter is increased.
The figure was obtained fa=a,.

the only existing solution for the individual map. Fer0,
the two-map system displays a synchronous period-2 cycl
(X1,X1) —(X5,X5) —(X1,X1) and an antisymmetric period-2
cycle (X1,X2)—(X2,X1)—(X1,X5). Both of these cycles are
stable, and their basins of attraction are organized in a char-
acteristic chesshoard structure. Moreover, except near the Figures 3a) and 3b) show a similar set of diagrams for
ends of the stability interval 8a<1+ /6, both cycles re- the subcritical transverse pitchfork bifurcation of the syn-
main stable ag attains a smal(positive or negativevalue. ~ chronous period-2 cycle that occurs at=—3[1

The bifurcation diagram in Fig.(d) unfolds the super- ++(a+1)(a—3)+1]. The two fully drawn line segments
critical transverse period-doubling bifurcations of the syn-along the horizontal axis of Fig.(8 again represent the
chronous period-2 cycle. Hera=a,. To the left and right regions of transverse stability for the period-2 cycle. The
in the diagram the fully drawn horizontal lines denote thepitchfork bifurcation takes place at the left hand edge of the
transversely stable period-2 cycle. In each of the periodleft of these intervals. The curves denotBg follow two
doubling bifurcations, the period-2 saddidenotedP,) is  symmetric asynchronous period-1 orbits produced in a trans-
turned into a repeller, and a symmetric period-4 saddle cyclgerse pitchfork bifurcation of the synchronous fixed point
(denotedP,) is born with its unstable manifolds along the P(Xq,Xo), Xo=1—1/a at e=—(a—1)/2 and connecting to
main diagonal{x=y}. The figure shows how the same the fixed point a{0,0). The figures show how two mutually
period-4 cycle is involved in both bifurcations. This is evensymmetric period-2 repellefslenotedP,) approach the syn-
more clear from the phase portrait in FigbPwhere we can  chronous period-2 saddle from either side to annihilate with
follow how the period-4 saddle as the coupling parameter i®ne another and transform the saddle into a repeller. To the
increased moves out in phase space to return to the synchrgght hand side of the bifurcation diagram the period-2 repel-
nous period-2 cycle. On the way, as shown in Fig)2the lers undergo an inverse period-doublitmarked P} pro-
period-4 cycle undergoes a couple of saddle-node bifurcaducing the above mentioned symmetric period-1 repellers.
tions. As we shall see below, the period-4 cycle is also in- Immediately after its birth, the points of the period-4
volved in a number of additional bifurcations through which cycle in Fig. Za) move away from the diagonal in accor-
it may stabilize in certain regions of parameter space. dance with the usual square root relation
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-0.5 : 0.0 i
3.0 145 a 4.0

1.2 FIG. 4. Variation of the coefficient€}" and C}P associated,
respectively, with the transverse pitchfork and the transverse
Pz AN period-doubling bifurcations of the symmetric period-2 cycle.

= vanishes. This is the point where the individual nfggpx)
1y N\ displays a superstable period-2 orbit. It is also the minimal
\ value ofa for which a transverse period-doubling bifurcation
can occur(see Fig. 1
Remark:The above analysis has assumed the interacting
= P, maps to be identical. In the presence of a small parameter
mismatch a fully symmetric period-2 cycle can no longer
/ exist, and the pitchfork bifurcation will be replaced by a
saddle-node bifurcation, involving the simultaneous appear-
PD P, ance or disappearance of a repeller and a saddle cycle
02 slightly off the main diagonal. For the period-doubling bifur-
02 12 cation the conqun for a subqrmcal or supercrmpal transi-
(b) X ’ tion will be determined by the sign of the Schwarzian deriva-
tive Sh=h"/h'—(3/2)(h"/h")? of the maph along the
FIG. 3. (a) Bifurcation diagram for one of the subcritical trans- transversal manifold. If, in the moment of bifurcati®h
verse pitchfork bifurcations of the symmetric period-2 cydle). <0, then the bifurcation is supercritical. $h>0, it is sub-

Corresponding phase portrait. The curves marRgdand Py, e~ (yiical The simplification we have used for the symmetric
spectively, show how pairs of mutually symmetric period-1 and _zcase is to také =0

repellers move under variation of the coupling parameter.

12 I1l. EXAMPLE OF A SOFT RIDDLING BIFURCATION
|7l ~[e—el (2.13
. . . , Figure 5 illustrates the situation in the phase plane of our

wheree, denotes the bifurcation point and—e|<1. This coupled map system faa=a, and &= —1.234. With this
result hinges on the fact thatis a normal parameter, i.e., a6 of a the transverse period doubling of the period-2
that changes I3 do not aff_egt the dynamics of the synchro- cycle occurs at = —1.2373. The full line along the diagonal
nou;_state. l(; IS vr\:orth r;lotmmg th"’.lt aIthomrJ]gh the p?rgrpeterﬁepresents the synchronized chaotic state, and the two points
(.:" '._1’ and 2, have the same sign at the point of bifurca,, this Jine indicated by open circles are the points of the
tion, in general they do not have the same magnitude. AS W iqg.o cycle that has just undergone a transverse period
can segFig. 2b)], t_h|s implies that the two point pairs of the .doubling. In the vicinity of these points, the four points in-
asynchronous period-4 cycle do not move out along theifjicated by circles with crosses through are the points of the
resp'ectlve manifolds at the same speed. . , synchronous period-4 cycle that has appeared in the bifur-

Flgurg 4 shows the results of a numerical _evaluatlon Okation. The period-4 cycle is a saddle cycle with a stable
the coefficients<C, for thePquper point of the period-2 cycle. anifold that connects it with the period-2 repeller. The un-
The two curves denote@; andC; ™ refer to the transverse giaple manifolds of the period-4 saddle stretch along the syn-
destabilization via a pitchfork and a period-doubling bifurca-cprgnization manifold. The arrows on the various stable and
tion, respectively (It is a simple matter to obtain analytic nstable manifolds denote their forward directions. It should
expressions for these curves. However, the expressions arg,a noted that since we are dealing with a noninvertible map,
“tgf clumsy, and we have left them out hgr&he curve for 4 (staple or unstabjemanifold is allowed to intersect itself.
Ci™ passes through zero fa=3 where éh? symmetric  Note how the two point pairs of the period-4 cycle, in accor-
period-2 cycle first arises. The curve f@f" diverges for  dance with the above discussion, have moved different dis-
a=1+5=3.236, where the longitudinal eigenvalug tances away from the period-2 cycle. Also shown in Fig. 5 is
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lines), the mixed absorbing ared’ [19,24] completely sur-
rounds the synchronized chaotic set. With the situation de-
picted in Fig. 6, the mixed absorbing area is a closed invari-
ant set, i.e.F(A")=.A". Hence trajectories starting inside
the mixed absorbing ardar at its boundarycannot leave it.
Moreover, most trajectories starting from a neighborhood
outsideA’ will follow the unstable manifolds of the period-4
\ saddle, fold at the critical curve$ ; or L3), and cross into
N A’. We conclude that as long as a mixed absorbing area
exists inside the basin of attractigand no other attractor
exists within the mixed absorbing ajedhe synchronized
chaotic state will attract almost all points from its neighbor-
hood. A is then a Milnor attractor, and its basin of attraction
can be locally riddled only16]. In this way the formation in
-005 a supercritical transverse bifurcation of a mixed absorbing
-0.05 X 1.25 area that stretches along the synchronized chaotic state plays
a major role for restraining the amplitude of the burst away
from the synchronized state.

FIG. 5. Situation in the phase plane immediately after the su- Surrounding the mixed absorbing area in Fig. 6, we find
percritical transverse period-doubling of the symmetric period-2the absorbing areal (also referred to as the trapping region
cycle. The figure shows the period-4 saddle cycle with its stable anfiL0]). Bounded by a finite number of segmehts=FX(L)
unstable manifolds. Also indicated are the absorbing area asf images of the critical curves, as given by Eq(2.3), the
bounded by segments of critical curvieg and the basin of attrac-  absorbing aref19,20 has the property that trajectories that
tion with its fractal boundarys = —1.234. enter this area cannot leave it again, if(,4) C.4. More-

over, trajectories that start in the neighborhood of the absorb-
the fractal boundary of the basin of attraction for the syn-ing area will enter it in a finite nhumber of iterations. The
chronized chaotic state. presence of an absorbing area is a characteristic feature of

In order to demonstrate a number of important detailsnoninvertible maps. For our system of two coupled logistic
Fig. 6 shows a magnification of the upper part of the phasenaps, the absorbing area exists in an interval of the coupling
plane. Heres = — 1.225.A denotegpart of) the synchronized parameter that includes part of the interval of asymptotic
chaotic set, ané, andP, are points on the period-2 repeller stability for the synchronized chaotic state, and can stretch
and the period-4 saddle cycle, respectively. beyond this interval. When, as illustrated in Fig. 6, the mixed

As bounded by the outmost loops of the unstable maniabsorbing area falls fully within the absorbing afead no
folds for the period-4 cyclgdrawn as thin linegsand by other attracting states thaexists in.A, almost all trajecto-
segments of the critical curves,—Lg (drawn as heavier ries starting in the absorbing area will end up in the mixed
absorbing area. Finally, on the boundary of the basin of at-
traction (and indicated by small triangles in Fig) &e find
the pointsPg of a period-8 repeller. Any neighborhood of
this repeller contains a positive measure set of initial condi-
tions from which the trajectories diverge towards infinity.

As we continue to increase the coupling parameter, the
points P, of the period-4 saddle cycle move further out
along the transverse manifolds of the period-2 repeller, and
the mixed absorbing ared’ continues to grow until it fills
out most of the absorbing areh This is illustrated in Fig. 7,
where e=—1.21. The critical curved , will serve as an
envelope to the unstable manifolds, and as long as the
period-4 cycle falls within the boundary of the absorbing
area, its unstable manifolds will be restrained to this area.
Compared with Fig. 6, the period-8 repeli@nd hence the
basin boundanyhas moved closer to the boundary of the
absorbing area. Ak=—1.205 a crisis takes place as the

0.66 x 1.0 boundary of the absorbing area comes in contact with the
basin boundary, and the period-8 repeller crosses into the
region delineated by the critical curves. We can see that this

FIG. 6. Magnification of the upper part of Fig. 5. Here the Nappens in points where the boundaries/oénd A" coin-
coupling parameter is= — 1.225.A denotes(part of) the synchro- ~ Cide. This marks the transition from local to global riddling
nized chaotic set, anBl, andP, are points of the period-2 repeller Of the basin of attractiofi16].
and the period-4 saddle cycle, respectively. Poifysienoted by a Figure 8 shows the situation immediately after this con-
small triangle belong to a period-8 repeller, which is situated at thdact bifurcation has occurred. Hese= —1.18. The points of
boundary of the basin of attraction. the period-8 repeller now fall inside the region delineated by

1.25

1.0

0.66
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L\

transverse destabilization of the period-2 cycle to the final
boundary crisis, we have not found evidence of the presence
of other attracting sets inl’ besides the synchronized cha-
otic state. This is the reason why we have been able to say
that the basin of attraction fod is locally riddled. However,
we cannot exclude that this is a result only of our finite
numerical accuracy. Our simulations have revealed how the
stable and unstable manifolds of the period-4 saddle intersect
in many points. This implies the existence of homoclinic
trajectories and of the complicated dynamics associated with
a Smale horseshoe. It is well known that under specific con-
ditions this can lead to the formation of Newhouse regions in
parameter space with a dense set of systems having infinitely
many attracting cycleg25,26. The presence of such regions
causes irreducible problems mathematically as well as nu-
0.67 X 0.86 merically, and we shall not discuss their consequences here.
. We consider the above scenario to describe the generic
FIG. 7. Fore=—121, the period-4 saddle cycle has moved o jtinn from locally to globally riddled basins of attraction
further out along the transverse manifolds of the period-2 repeller,

and the mixed absorbing arell covers most of the absorbing area following a supercritical riddling bifurcation in coupled map

A. At the same time the period-8 repeller has moved closer to thgystems when the asynchronous cycle bom in the bifurcation

common boundary afl and A’ does npt stabilize before thg contact bif_urcation between the
absorbing area and the basin of attraction has occurred. Our
. . . analyses of this transition were recently criticized by Bischi
the images pf the crl_t|cal curves,hthe absorbing arfea h"?‘& d Gardini22]. Unfortunately, these authors did not notice
ceased to exist, and direct access has been opened for poi t when the contact bifurcation occurs, the boundaries of

ztartlng ntea][ the_tranS\grs_ely “”Sttat_"ff"_ p?r'o_?r'].z c(yariei S the absorbing and the mixed absorbing areas coincide. Hence
ense set of preimaget diverge to infinity. This is a typi- .the bifurcation involves a minimal, invariant absorbing area,

cal example of global riddling. One can examine this transrand the criticism is not justified.

tion in more detail by constructing the preimages of those In Sec. V we shall discuss a very different and much more
tongues of the basin of infinity that have penetrated into th%omplicated scenario that arises fra,=3.592 52
region AN A'. Immediately after the boundary crisis these.l.hiS is the parameter value for which the period-2 cycle of

preimages can be followed backward along the unstablraqe individual mapf 4(x) displays its first homoclinic bifur-

manifolds that define the boundary ofl” toward the cation. Here the asynchronous saddle cycle born in the rid-
period-4 saddle cycle, and from here along the transver

. . .SSIing bifurcation stabilizes in an inverse period-doubling bi-
g;:ggﬁgs back towards the period-2 repeller on the Malrcation to produce an attracting state inside the absorbing

. . area for the synchronized chaotic set. First, however, let us
Remark:To complete the present discussion, let us note y

. . . : consider a generic scenario for the appearance of globally
that while varying the coupling parameter from the point Ofriddled basins of attraction following lkard riddling bifur-

cation that can also be observed #or a,.

0.97

0.86

1.0

IV. SCENARIO FOR A HARD RIDDLING BIFURCATION

At the other end of the interval of asymptotic stability for
a=ag, a transverse destabilization of the symmetric
period-6 cycle takes placgl6]. This again occurs via a
period-doubling bifurcation®;, = —1). However, evaluation
of the parameter€; using the procedure described in Ref.
[21] shows that the bifurcation is subcritical(<0). Hence,

. g \\ before the transition occurs, the points of a period-12 repeller
N - =
T \\X e This situation is illustrated in Fig.(8) where we also can see

4 the fractal boundary of the basin of attraction for the syn-

\

A%
i,

N\ \\

Ny are situated on either side of the symmetric period-6 cycle.
“ 1
055 W o ‘

\ chronized chaotic state. Closer examination reveals that the
0.55 x L0 points of the period-12 repeller fall at cusp points of the

basin boundary, and any neighborhood of these points con-
FIG. 8. Crossing of the period-8 repeller through the segment§@ins & positive measure set of initial conditions from which

of critical curves and unstable manifolds that defite and .4’  the trajectories diverge to infinity.

marks the transition from locally to globally riddled basins of at-  Figure 9b) is a magnification of part of the structure in

traction. There is now direct access from the neighborhood of théig. Xa). Here the coupling parameter= —1.3. The figure

transversely unstable period-2 cy¢ind its dense set of preimages shows(the upper part 9fthe synchronous chaotic state with

to infinity. three points of the symmetric period-6 cycle situated along
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1.25 0.94

005 0.7
@ -0.05 X 1.25 0.7 X 0.94

0.94

FIG. 10. Fore=—1.307 the period-12 repeller has moved
across the critical curves, and the absorbing area has ceased to exist.

where the period-12 repeller disappears, direct access is
opened from the symmetric period-6 cy¢ks well as from

its dense set of preimagéa® infinity. In accordance with the
scenario described by Lat al.[15], the emergence of global
riddling in this way occurs simultaneously with the destabi-
lization of the period-6 cycle in a local bifurcation.

Based on the above results we conclude that the riddling
bifurcation will be hard if it is associated with a subcritical
destabilization of some orbit. The subcritical bifurcation
does not produce asynchronous saddle cycles whose unstable
manifolds can restrain the bursts of trajectories. It is possible,
of course, that saddle cy¢® of appropriate periodicity
could exist outside the repelling cy¢s involved in the
FIG. 9. () Overview of the situation in phase plane before the transverse Qestabll!zatldran exampl_e was provided b.x the
transverse destabilization of the symmetric period-6 cycle. The fig-mOd.eI consudergd in Re[le]). In' this case the subcritical
ure shows the asymmetric period-12 repeller with its Iongitudinalr!ddllng blfL_Jrcatlon mlght not directly produce a globally
manifolds.(b) Magnification of part ofl@). Note how the absorbing riddled basin of attraction.
area falls inside the mixed absorbing area, which now exists before

the riddling bifurcation. V. DESTABILIZATION SCENARIO FOR a=a,

® 0.7 X 0.94

the main diagonal. Also shown is the absorbing area as Our last example concerns the sequence of events that
bounded by segments of the critical curdes-L,, (heavy take place in connection with the destabilization of the syn-
lines). The dots indicate where these segments connect. Outhronized chaotic state fa=a;, and e=—1.1. This sce-
side the absorbing area we find six points of the period-1Dario starts with the transverse destabilization of the sym-
repeller (shown as circles with crosses throligihs noted metric period-2 cycle in a supercritical period-doubling
above, these points fall at cusp points of the basin boundaryifurcation for e=—1.1560. The blowout bifurcation at
In the longitudinal direction the unstable manifolds of thewhich the transverse Lyapunov exponent becomes positive,
period-12 repeller again seem to wind around the synchroand the chaotic state loses its average attraction occurs at
nized chaotic state. However, since these manifolds now fall= —1.0385. Hence we are interested in following the bifur-
outside the absorbing area, we cannot be sure that they witlations that take place in the interval betwesn —1.1560
always remain bounded in the vicinity of the synchronousand —1.0385.
set. In the present situation this appears to be the case, sinceFor a=a;, the synchronous chaotic state consists of two
the unstable longitudinal manifolds all connect to the criticalseparate bands. The absorbing area and mixed absorbing area
curves and hence define a mixed absorbing ambéch now  each therefore also consists of two regions that are mapped
exists before the riddling bifurcation one into the other under the action lef Figure 11a) shows

As we approach the bifurcation, the points of thethe upper part of the phase plane after the transverse period-
period-12 repeller move through the critical curigs and  doubling has occurred. Here= —1.155. We note the two
the absorbing area ceases to exist. Unstable manifolds nopoints of the asynchronous period-4 saddle cycle situated
point out through the images of the critical curves, and tra-along the transverse manifolds of the symmetric period-2
jectories starting outside of the longitudinal manifolds of therepeller. The points of the period-4 saddle are indicated as
period-12 repeller will diverge. This situation is illustrated in circles with crosses through. Together with segments of the
Fig. 10 for e =—1.307. Finally, at the point of bifurcation critical curvesL,; and L5, the unstable manifolds of the
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0.95 1.02
Y
Y
0.75
@ 0.75 X 0.95 0.86. A
0.63 x 0.87
0.89
L6 A FIG. 12. The asymmetric period-4 cycle has undergone an in-
verse, subcritical period-doubling transition, producing a stable
P4 ) period-4 cycleP, and a period-8 saddleg. The stable manifolds
of this saddle delineate the immediate basin for the period-4 node.
L The figure was obtained far=—1.08.
8 5
Y L7 P2
has merged into a two-band attractor. The smaller absorbing
L6 area is destroyed in the homoclinic bifurcation, and as soon
as the nonlinearity parametarexceedsa; by as little as a
part in 13* one can start to observe how trajectories escape
I ‘ along the transverse manifold of the synchronous period-2
085 8 cycle.
b) 0.85 ¥ 0.89 Immediately after the transverse destabilization of the
' : period-2 cycle[e.g., for e=—1.15597 as shown in Fig.
FIG. 11. (a) Upper part of the phase plane fara, ande= 11(b)] the periOd'4 saddle pOintS will be situated very close

—1.155. We observe a larger and a smaller absorbing area togetht the main diagonal and its unstable manifolds stretch along
with a mixed absorbing area delineated by the unstable manifolds dhe synchronized chaotic state as a narrow band from which
the asymmetric period-4 saddléh) Magnification of part of the trajectories cannot escape. Hence we again observe that a
phase plane fos=—1.15597. Note how the transverse manifolds supercritical transverse bifurcation leads to a soft riddling
of the period-2 repeller pass right between the critical curves.  transition with a locally riddled basin of attraction and with
small and smoothly growing bursts of trajectories away from

period-4 saddle define a mixed absorbing a®a Around the synchronized state. As we move further away from the
this area we find a large absorbing ardaas bounded by bifurcation point, however, a completely different sequence
segments of the iteratés;, L,, Ly, andL, of L. of events takes place. At=—1.09571 the period-4 saddle

Trajectories starting inside the mixed absorbing area careycle undergoes an inverse, subcritical period doubling in the
not escape from it. Except for a measure zero set of trajedirection of its unstable manifold. This produces a stable
tories starting from points on the external branches of thesynchronous period-4 cycle surrounded on both sides by the
stable manifolds of the asynchronous period-4 cy@ed points of a period-8 saddle cycle.
possible preimages of these manifgldsajectories starting This situation is illustrated in Fig. 12, where a poity of
from a neighborhood of the mixed absorbing area will movethe stable period-4 cycle is marked by a small square and the
along the unstable manifolds of the period-4 saddle pointsieighboring point®g of the period-8 saddle by circles with
toward the points where they meet the critical cubve(or ~ small crosses. Situated along the main diagonal and embed-
L,). After a folding here they will be mapped into the mixed ded in the synchronized chaotic attracfgrthe upper point
absorbing area to soon be trapped in the smaller absorbirmgf the period-2 repeller has been indicated by a small tri-
area defined by the critical curvés, L3, Ls, L;, Lg, Lg,  angle. Also shown in this figure are the stable and unstable
L,o, andLy,. The transverse manifolds of the synchronousmanifolds of the period-8 saddle. The white regiéfw) in
period-2 cycle pass right between the critical curkgsand  the top right corner belongs to the basin of infinity. With a
L,. Hence, in spite of the fact that the period-2 cycle has @ray shading, the arg8(A) is the basin of attraction for the
dense set of preimages along the main diagonal, not a singkynchronized chaotic state. As in the previous figures, the
trajectory will be able to leave the smaller absorbing area. boundary between these two basins is fractal.

Remark: The smaller absorbing area represents the ab- The inverse period-doubling bifurcation at= —1.09571
sorbing area that existed before the homoclinic bifurcation irhas produced a new attracting state inside the former basin of
which the four-band chaotic attractor for the individual mapattraction for the synchronized chaotic state. The immediate
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basin for the period-4 cycléshown crosshatched in Fig. 12 1.02
is defined by the stable manifolds of the period-8 saddle.
Emanating from the symmetric period-2 repeller, these mani-
folds delineate a basin that stretches as a set of tongues all
the way down to the main diagonal. Immediately after the
stabilization of the period-4 cycle these tongues will be very
narrow and they will not intersect the smaller absorbing area.
As a consequence trajectories that start within this area will Yy
not be able to reach the stable period-4 cycle, and the basin
of attraction for the synchronized chaotic state will remain
locally riddled only.
Besides the immediate basin, the basin of attraction for
the asynchronous period-4 cycle also consists of a set of
secondary tongues. Most prominent among these are the 0.95
tongues that emanate from the points where the critical 0.62
curvesl ; andL ; intersect the main diagonal. These second-
ary tongues are also clearly visiklerosshatchedn Fig. 12.
Like the primary tongues they are delineated by sharp and FIG. 13. A stable period-12 cycle has been born together with a
well-defined edges. period-12 saddle in a subharmonic saddle-node bifurcation. The
If the value of the nonlinearity parameteexceeds, by st_able mgnifold of the p_eriod-12 saddle defines discs shaped imme-
the smallest amount, the smaller absorbing area ceases {{te basins for the period-12 node. Here —1.0615.
exist. The basin of attraction for the asynchronous period-4
cycle will then include tongues that emanate from the dens@ode into a stable focu§.e., the eigenvalues become com-
set of preimages of the period-2 repeller in the synchronizeglex conjugate] and ate=—1.0758 the period-8 saddle
chaotic setA, and the basin of attraction fak will be glo- undergoes a supercritical pitchfork bifurcation in the direc-
bally riddled. In this case the transition to global riddling is tion of its stable manifold. This produces a period-8 repeller
accomplished via two local bifurcations: first the transversesurrounded by two period-8 saddles at the boundary of the
supercritical period-doubling of the symmetric period-2immediate basin of attraction for the period-4 focus. éAt
cycle and thereafter the stabilization of the asynchronouss—1.0625 a subharmonic saddle-node bifurcati®8]
period-4 cycle in an inverse subcritical period-doubling.takes place in which a stable period-12 cycle is born together
However, the new tongues tend to be extremely narrow, andith a period-12 saddle. This situation is illustrated in Fig.
in the numerical calculations they show up only as randomlyl3, wheres = —1.0615.
scattered points within the area that has otherwise been as- We now have two coexisting stable solutions in the repel-
signed toB(A). ling tongues emanating from the symmetric period-2 repel-
A similar transition to global riddling has recently been ler. In Fig. 13, a pointP, of the period-4 focus is indicated
described by Astakhoet al. [27] for a pair of nonlinearly by a square drawn with relatively heavy lines, and the points
coupled logistic maps. In their main scenario it is the fixedP 4, of the period-12 node are indicated by finer squares. The
point that first undergoes a transverse destabilization in themmediate basin of attraction for the period-12 cycle takes a
form of a supercritical period doubling. After similar period- very unusual form, namely, as a set of discs surrounded by
doubling bifurcations of the symmetric period-2, -4, -8, andtopological circles which are formed by the stable manifold
-16 cycles, the asynchronous period-2 saddle cycle produceaf the period-12 saddléoints of which are shown as small
in the first transverse bifurcation stabilizes in an inverse, subeircles. This peculiar structure, in which the same stable
critical pitchfork bifurcation, giving way to a globally manifold as a closed curve approaches the saddle point from
riddled basin of attraction for the synchronous chaotic stateboth sides, is made possible by virtue of the noninvertibility
We would like to emphasize, however, that the globallyof the mapF. This noninvertibility allows the preimages of
riddled basins of attraction created through these processéise period-12 saddle cycle to serve as points of separation
have a fairly unusual structure. First, the main tongues arbetween the two directions of the manifolds. The complete
delineated by the stable manifolds of a saddle cyatea pair  basin of attraction for the period-12 node consists of these
of saddle cycles By contrast, in the commonly described immediate disc-formed domains together with all their pre-
form of global riddling[10,11,18, the repelling tongues are images in the main tongues as well as in their preimages. A
defined only in terms of bundles of trajectories that follow ansimilar basin structure was found in Ré29] for a two-
unstable manifold away from the synchronized chaotic statedimensional, noninvertible map derived from a problem in
In addition there is a prominent set of secondary tongues thaadiophysics.
also have sharp and well-defined edges. Finally, the remain- The next transformations of the phase portrait to occur
ing tongues form an extremely thin structure that shows ugnvolve a transcritical 1:3 subharmonic bifurcatip®8] of
in the numerical calculations only as randomly scatteredhe period-4 focus at=—1.0581, and a Hopf bifurcation of
points from which the trajectories eventually reach the asymthe stable period-12 solution a&= —1.0562. In the first of
metric point attractor. these bifurcations the points of the period-12 saddle cycle
As the coupling parameter is further increased, the phaspass right through the points of the period-4 focus and de-
portrait starts to become complicated. A& —1.085, the stabilize the latter cycle. Figure 14 illustrates the basins of
asynchronous period-4 cycle is transformed from a stablattraction that exist after this bifurcation. Here

X 0.78
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FIG. 14. A transcritical 1:3 subharmonic bifurcation has trans-
formed the stable period-4 focus into an unstable focus. The small

circles are points of the period-12 saddle that have passed right F'G: 15. Fore=—1.0513, a single 12-piece chaotic attractor
through the period-4 focus. Here= — 1.0564. exists in the repelling tongues emanating from the symmetric

period-2 repeller. As the coupling parameter is further increased,

.the 12-piece chaotic attractor merges into a four-piece attractor to

=—1.0564, and the points of the period-12 saddle are agai X o . T
’ . - . f attract bound
shown as small circles. The period-12 focus is now the Onlyﬁnally disappear together with its basin of attraction in a boundary

attracting set inside the tongues that emanate from the syﬁ-nSIS'
chronous period-2 cycle. The Hopf bifurcation at  boundary crises, leaving only a chaotic saddle of period 4 in
=—1.0581 produces a period-12 invariant cir@leferred to  the region around the original asynchronous period-4 cycle.
as a torus T4, corresponding initiallfwith high probability Figure 15 shows a phase portrait for= —1.0513. For this
to quasiperiodic motion. With a further increase of the cou-value of the control parameter, our coupled map system
pling parameter, the dynamics becomes noninvertible andisplays a 12-piece chaotic attractor situated in the repelling
the torus breaks dowr80], producing either regular periodic tongues issued from the points of the symmetric period-2
solutions or chaos in the form of a so-called Cantor toruscycles. As described above, this attractor has been produced
In both cases we can have either a single stable solution afia breakdowr(loss of differentiability of the 12-piece torus
two coexisting and mutually symmetric attractors. For T,,. Also shown in the figure are the locations of the
e[ —1.054,-1.053, for instance, the dynamics is reduced period-4 and -12 cycles, both of which are now unstable
to two symmetrically located stable period-12 solutions andocuses.
two saddle cycles of the same period. This completes our discussion of the complex scenario
Remark:This type of organization appears to be charac-that unfolds after the supercritical transverse destabilization
teristic for coupled symmetrical map systems. In a detailef the symmetric period-2 cycle. After the asynchronous cha-
study of bifurcation phenomena in systems of diffusivelyotic attractor has disappeared in a boundary crisis, no other
coupled logistic maps, Giberti and Verrigl] found that the  attracting set is observed inside the larger absorbing area,
presence of closed invariant manifolds containing periodicand the basin of attraction for the synchronized chaotic state
orbits can play a prominent role for the dynamics. Typically,remains locally riddled until, at=—1.0385 a blowout bi-
for anN-dimensional system, such a manifold will hold up to furcation takes place. In this bifurcation the typical trans-
N stable node solutions ard saddles. In the direction nor- verse Lyapunov exponent for trajectoriesbecomes posi-
mal to the manifold the attraction can be relatively strong saive, and the synchronized chaotic state loses its average
that trajectories rapidly settle onto the closed invariant curveattraction. However, the larger absorbing aséastill exists
Along the manifold, on the other hand, the action of the mafinside the basin of attraction, and, as described in Réi,
can be nearly indistinguishable from the identity transformathe blowout bifurcation leads to on-off intermittency. The
tion, and the dynamics may be very slow. Hence, one caghaotic attractor spreads over the whole area of the absorbing
observe extremely long transients. set. However, trajectories starting near the synchronization
For other values of the coupling parameter, the dynamicsnanifold cannot diverge to infinity. For slightly higher val-
on the Cantor torus produced through the breakdowm;ef ues of the coupling parameter, the two-dimensional chaotic
involves two coexisting chaotic attractors. Foe attractor undergoes an inverse boundary crisis by which it
=—1.0517, for instance, two (%12)-piece chaotic attrac- decomposes into two mutually symmetric chaotic attractors.
tors exist. Ate=—1.051 34, a single 12-piece chaotic attrac-For ¢=—1, these attractors are both restricted to one-
tor is born and for slightly higher values of the coupling dimensional manifolds, and one can observe the phenom-
parameter, the 12-piece attractor merges into a four-piecenon of intermingled basins of attractipb6]. Each attractor
attractor. This last process gives rise to the appearance bkre has a basin that is riddled with initial conditions that
so-called rare points32], indicating that merging takes place lead to the other attractor. The mutually symmetric chaotic
across a fractal basin boundary. Finally.eat —1.0458 the  attractors finally disappear in a boundary crisis at
chaotic attractor and its basin of attraction disappear in a —0.935. When this occurs, the larger absorbing area in



2828 MAISTRENKO, MAISTRENKO, POPOVYCH, AND MOSEKILDE PRE 60

3.81 - boundary crisis in which a four-piece chaotic attractor disap-
pears through collision with its basin boundary.

The curve marked CB represents the contact bifurcation
between the absorbing area and the basin boundary for the
synchronized chaotic statd. For a=a,, as the coupling
parameter is increased, the contact bifurcation occurs before
the stabilization of the asynchronous period-4 cycle. This
leads to the scenario that we described in Sec. lll. Here the
transition from local to global riddling of the basin of attrac-
tion for A takes place via the contact bifurcation. Far
=a,, on the other hand, the asymmetric period-4 cycle sta-
bilizes before the contact bifurcation, and the scenario de-
scribed in the present section takes place. If the nonlinearity
parameter is precisely equal &, we do not observe a
transition to global riddling. For a value @f slightly larger
than a;, however, we observe a transition to the peculiar
form of global riddling that manifests itself in the form of
randomly scattered dots within the region otherwise assigned
as the basin foA [27].

Figure 1&b) provides a little more detail about the bifur-
cation structure. Again, the vertically crosshatched region
represents parameter values for which stable solutions exist
inside the repelling tongues issued from the symmetric
period-2 cycle. The left edge is the bifurcation curve in
which the asynchronous period-4 cycle stabilizes, and the
right edge represents the boundary crisis where the repelling
tongues disappear. The narrower, horizontally crosshatched
area is the region where the stable period-12 cycle exists.
This cycle arises in a subharmonic saddle-node bifurcation to
be destabilized at higher values of the coupling parameter in
3.57 a Hopf bifurcation leading to the above mentioned 12-piece

(b) -1.15 e -1.02 torusT;,. The punctuated curve running through the middle
of the finger again represents the bifurcations in which the

FIG. 16. (@) Phase diagram illustrating the regidwertically asynchronous period-4 cycle loses its stability. Abave
crosshatchedin which attracting states exist inside the repelling =3.64, where the period-12 cycle has not yet appeared, this
tongue_s emanating frc_>m the symmetric period-2 cycle. The tri_anguhappens via a Hopf bifurcation. Far<3.64, however, the
lar region to the left is the region Where. the symmetric IOfa'”()d'zperiod-4 cycle loses its stability in a 1:3 subharmonic tran-
cycle is transversely stableompare with Fig. L (b) Magnification scritical bifurcation.

illustrating the region of stability for the period-12 cydleorizon- At the other end of the interval of asymptotic stability for
tally crosshatched The curve marked CB represents the contact e .
a=a, the transverse destabilization takes place in the form

bifurcation. . . . . -
of a subcritical pitchfork bifurcation of the symmetric

Fig. 11 has made contact with the basin boundary ano(’)eriod-2 cycle at=—1.46. This leads directly to a globally
hence, has ceased to exist. riddled basin of attractiof16]. Let us finally note that, for

The phase diagram in Fig. @ gives an overview of the a=ai, there.is an add?tional interval of weak stability.for
main bifurcations involved in the above scenarios, and clari{h€ synchronized chaotic state around0.3. However, this
fies the difference between the scenarios observedafor interval does not contain regions of asymptotic stability for
—a, and fora=a, . In this diagram the crosshatched regionthe _chaot|c set. Ne!ther is therg an ab_sorblng area. Hence the
to the left represents parameter values for which the symmep-as'” of attraction is globally riddled in the whole interval.
ric period-2 cycle is transversely stalleompare with Fig.
1). At the right hand le.dge of this regionz the peripd-z cycle VI. CONCLUSION
undergoes a supercritical transverse period doubling, produc-
ing a period-4 saddle cycle outside the main diagonal. The One of the main problems relating to the application of
vertically crosshatched finger to the right of this bifurcationchaos synchronization methods concerns the behavior of the
curve represents the regions of parameter space in whigtpupled system once the synchronization breaks down. In
attracting states exist in the repelling tongues emanatingertain situations, one can observe an abrupt transition to a
from the points of the period-2 repeller. The left hand edgestate in which the trajectories can diverge far out in phase
of this finger is the bifurcation curve in which the asymmet-space. In other situations the dynamics shows minor and
ric period-4 saddle stabilizes in an inverse, subcritical periogsmoothly appearing bursts away from the synchronized cha-
doubling. The broken curve running through the middle ofotic state. Considering two coupled identical, one-
the finger is the Hopf bifurcation curve for the period-4 dimensional maps, we have derived exact analytical condi-
cycle, and the right hand edge of the finger represents thi#gons for the transverse destabilization of the period-2 cycle

a

an
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to be either subcritical or supercritical. In RE21] we pro-  trate this relation let us consider tiedimensional coupled
vided the results for the generic case ofraperiodic cycle. map system
Based on these results, we conjecture that the riddling 0 K

bifurcation will be hard or soft depending on the subcritical N : i Ny :
or supercritical nature of the first transverse destabilization of Xn 2 (1) =FOR()+ K ;1 (oI = F e}
a period cycle. Immediately after a supercritical transverse (6.1
bifurcation, the unstable manifolds of the emerged saddle . . B
cycle(s) will stretch along the synchronization manifold. To- whergs IS t.he coupl_mg constelnt anf(x) =ax(1-x) th?
gether with segments of critical curves, segments of thesgne-dmensmr_]al Iog|st_|c_ Tam—l,Z, T denotes the d|s_-

. ; . . : ; . Crete time variable, andj=1,2, ... K is a humber associ-
manifolds will define a closed invariant regidgthe mixed

bsorbi oaf hich traiectori i Fol ated with the individual mapa is assumed to be given a
absorbing arearom Which trajectories cannot €scape. Fol-, 4),a gych that the dynamics fifx) is chaotic. As shown by
lowing a subcritical transverse bifurcation, on the other hand

. . . . ) > "WKaneko[ 7], between the turbulent states at low values of the
no such mixed absorbing area will exist after the bifurcation

) . . ‘coupling parameter and the fully synchronized coherent
and direct access may be created for the trajectories to Moyg,ia ot high values of, there is a coupling interval where

far away. the asymptotic behavior @6.1) is dominated by two-cluster

Our analysis is based on the assumption that the first orbijy . mics. Under these conditions we can make the identifi-
to lose its transverse stability is a cycle. As shown by Hunt.Z

and Ott[33], this is the generic situation. In their discussion

of orbits with optimal properties, they conjectured that for a Xp=Xp(1)="-"=Xx,(K3),
typical one-dimensional map, nonperiodic orbits with opti- (6.2)
mal properties occur on a set of zero Lebesgue measure in Yn=Xp(K1+1)="--=Xx,(K),

parameter space. Moreover, the measure of parameter Va|l.\%ﬁ ereK
for which the optimal orbit has a perio_d greater tha_n SOM&he clusters. It is now easy to see that the variaklasdy
interger N decreases exponentially witN. (The optimal - :
e o .satisfy the relations

property of significance for our analysis is a transverse ei-
genvalue that exceeds unity. K—K;

We have also described two different scenarios by which Xn+1= f(Xn) + 28 —— (F(yn) = F(Xn)),
global riddling of the basin of attraction can arise after an
initial supercritical riddling bifurcation. This analysis has K,
clearly emphasized the important roles played by the con- Yn+1=F(yn) 28 1= (F(X0) = F(yn)).
cepts of absorbing and mixed absorbing areas developed
mainly by Miraet al.[19] and applied and extended by Bis-  If, finally, K;=K/2, system(6.3) reduces to a system of
chi, Stefanini, and Gardifi20]. In the first scenario the tran- two symmetrically coupled logistic maps with nonlinear cou-
sition from locally to globally riddled basins of attraction pling. Hence we conclude that the transition from one- to
occurs in a contact bifurcation as a repelling orbit situated atwo-cluster behavior in th&-dimensional, globally coupled
the boundary of the basin of attraction crosses the commomap system will follow the same general scenarios as we
boundaries for the absorbing and the mixed absorbing areagescribed above.
In the second scenario the transition to the globally riddled Particularly when the chaotic dynamics of the individual
basin of attractior(for a>a,) occurs via a secondary local map is highly developedi.e., for large values of the nonlin-
bifurcation. This bifurcation stabilizes the saddle cycle pro-earity parametem), instead of two-cluster dynamics one
duced in the soft riddling bifurcation, and hence creates dinds a glassy phase where a couple of large clusters coexist
new attracting state inside the absorbing area. It is worthlvith many small cluster§7]. From a thermodynamic point
noticing that the characters of the globally riddled basins obf view the glassy phase may be interpreted as a frozen dis-
attraction generated by these two scenarios are quite diffeequilibrium structure similar to the frozen states that one can
ent. observe in spin glass models. From the point of view of our

Let us finally note that although we have considered amore detailed bifurcation analysis, however, the glassy phase
simple system of only two coupled logistic maps, our modelarises from the existence, together with the synchronized
is directly related to the problem of clustering in globally chaotic state, of stable asynchronous solutions that each
coupled map systems as described by Karfé@foTo illus- commands a certain basin of attraction.

1(1=K;<K) is the number of oscillators in one of

(6.3
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