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Desynchronization of chaos in coupled logistic maps

Yu. L. Maistrenko,1 V. L. Maistrenko,1 O. Popovych,1 and E. Mosekilde2
1Institute of Mathematics, National Academy of Sciences, Kiev, 252601, Ukraine

2Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
~Received 22 January 1999!

When identical chaotic oscillators interact, a state of complete or partial synchronization may be attained in
which the motion is restricted to an invariant manifold of lower dimension than the full phase space. Riddling
of the basin of attraction arises when particular orbits embedded in the synchronized chaotic state become
transversely unstable while the state remains attracting on the average. Considering a system of two coupled
logistic maps, we show that the transition to riddling will be soft or hard, depending on whether the first orbit
to lose its transverse stability undergoes a supercritical or subcritical bifurcation. A subcritical bifurcation can
lead directly to global riddling of the basin of attraction for the synchronized chaotic state. A supercritical
bifurcation, on the other hand, is associated with the formation of a so-called mixed absorbing area that
stretches along the synchronized chaotic state, and from which trajectories cannot escape. This gives rise to
locally riddled basins of attraction. We present three different scenarios for the onset of riddling and for the
subsequent transformations of the basins of attraction. Each scenario is described by following the type and
location of the relevant asynchronous cycles, and determining their stable and unstable invariant manifolds.
One scenario involves a contact bifurcation between the boundary of the basin of attraction and the absorbing
area. Another scenario involves a long and interesting series of bifurcations starting with the stabilization of the
asynchronous cycle produced in the riddling bifurcation and ending in a boundary crisis where the stability of
an asynchronous chaotic state is destroyed. Finally, a phase diagram is presented to illustrate the parameter
values at which the various transitions occur.@S1063-651X~99!04509-2#

PACS number~s!: 05.45.2a

I. INTRODUCTION

Interacting chaotic oscillators are of interest in connection
with a wide range of problems in science and technology@1#.
In the biological sciences, for instance, one of the fundamen-
tal problems is to understand how a group of cells or func-
tional units, each displaying complicated nonlinear dynam-
ics, can interact with one another to produce different forms
of coordinated function at a higher organizational level@2#.

Studies performed by a number of investigators have dis-
closed how chaotic interaction can lead to a variety of dif-
ferent synchronization phenomena. Inphase synchronization
@3,4#, for instance, the interacting chaotic systems adjust
their phases such that the mean return times to some Poin-
carésecant are related in a rational manner. The amplitudes,
on the other hand, can vary quite differently.Full synchro-
nization, in which both the phases and amplitudes develop in
precisely the same way, can be achieved through the cou-
pling of two ~or more! identical oscillators@5#. In the pres-
ence of a parameter mismatch between the chaotic systems,
lag synchronizationmay be observed@6#. Here the ampli-
tudes of the two subsystems are correlated, but there is a
phase shift between their motions. Finally, if more than two
oscillators are involved, one may observe the phenomenon of
clustering@7# or partial synchronization@8#, where some of
the oscillators synchronize and others do not. This is often
associated with the coexistence of a number of different syn-
chronized states, each with its own basin of attraction.

Full synchronization is of interest in connection, for in-
stance, with the development of new types of communication
techniques that exploit the possibility of masking a message
by mixing it with a chaotic signal@9#. With both the ampli-
tudes and phases of the interacting oscillators varying in the

same way, the synchronized chaotic state will be restricted to
a smooth invariant manifold of lower dimension than the full
phase space. A similar situation can also arise in nonlinear
dynamic systems with built-in symmetries@10,11#. A main
problem is then related to the stability of the synchronized
state to perturbations transverse to the synchronization mani-
fold. Another important question concerns what happens
when the synchronization breaks down. Recent studies of
these and related problems have lead to the discovery of a
variety of new phenomena, includingriddled basins of at-
traction @10,11#, attractor bubbling@12#, andon-off intermit-
tency@13,14#.

Riddled basins of attraction may be observed in regions of
parameter space where the synchronized chaotic state is at-
tracting on the average~the typical transverse Lyapunov ex-
ponents are negative!, while at the same time particular or-
bits embedded in the chaotic set are transversely unstable
~the corresponding eigenvalues are numerically larger that
one! @11,12#. The basin of attraction for the synchronized
chaotic state may then become a fat fractal, riddled with
initial conditions from which the trajectories diverge toward
infinity or approach other asymptotic states. The transition in
which the first orbit on the chaotic set becomes transversely
unstable is referred to as the riddling bifurcation. For a sys-
tem of two coupled one-dimensional maps, this bifurcation
may be either a pitchfork bifurcation~eigenvalue11! @15# or
a period-doubling bifurcation~eigenvalue21! @16#.

However, transverse destabilization of orbits embedded in
the chaotic set is not sufficient for an observable riddling to
arise. This will depend on the global dynamics of the system.
Having left the locally repelling regions in the neighborhood
of the chaotic set, the trajectories may wander around in
phase space without ever approaching another attractor~or
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escaping to infinity!. Sooner or later most of them will return
to the neighborhood of the synchronization manifold. Some
may again be mapped into repelling tongues, while others
will be attracted by the chaotic set, and at the end almost all
trajectories starting close to the invariant manifold will end
up in the synchronized state. This produces the phenomenon
that has been calledlocal riddling @12,16,17#. In the presence
of noise, a locally riddled basin of attraction will manifest
itself in the form of attractor bubbling@12,18#, where inter-
vals of desynchronized bursting behavior occur.

Denoting the synchronized chaotic state byA, its d neigh-
borhood byUd(A), and its basin of attraction byb(A), the
basin is said to be locally riddled if there exists ad such that
A attracts almost all points from Ud(A), i.e.,
m$b(A)ùUd(A)%5m$Ud(A)%, where m$•% denotes a Le-
besgue measure. In contrast to the case of asymptotic stabil-
ity, however, the transverse repulsive character of orbits em-
bedded in the synchronized chaotic set implies that the
neighborhood of any point ofA will contain a positive mea-
sure set of points that leaveUd(A) in a finite number of
iterations.

Alternatively, the global dynamics of the system may be
such that it allows direct access for trajectories repelled from
the neighborhood of the transversely destabilized orbit~as
well as from the neighborhoods of its dense set of preim-
ages! to go to some other attractor~or infinity!. This is the
case ofglobal riddling. A then attracts a positive Lebesgue
measure set of points fromUd(A), but not the full measure,
i.e., 0,m$b(A)ùUd(A)%,m$Ud(A)%. We have previously
described@16,17# how the distinction between these two
types of riddling for a system of two coupled, noninvertible
maps depends on the existence of a so-calledabsorbing area
@19,20# that controls the global dynamics of the system, and
can restrain trajectories starting near the synchronized cha-
otic set from reaching other limiting states.

The bubbling transition itself may be characterized as be-
ing either soft or hard. This distinction was introduced by
Venkataramaniet al. @18# to describe two different situations
that can be observed immediately after the first orbit has lost
its transverse stability. After a soft transition, trajectories
starting in the neighborhood of the synchronization manifold
will remain close to this manifold. After a hard transition, on
the other hand, trajectories starting close to the synchroniza-
tion manifold can immediately move far away in phase
space, and some may approach other attractors. We have
recently shown@21# how the distinction between a soft and a
hard riddling bifurcation is related to the supercritical or sub-
critical nature of the transverse bifurcation in which the first
orbit embedded in the synchronized chaotic set loses its sta-
bility. At the same time we have established general analyti-
cal conditions for the transverse bifurcation of a periodic
orbit to be either supercritical or subcritical. This derivation
was based on the construction of an asymptotical one-
dimensional map acting along the transverse invariant mani-
folds of the orbit that first loses its stability. In a supercritical
transverse destabilization of a periodic orbit, the unstable
manifolds of the asynchronous saddle cycle~s! born in the
bifurcation ~together with elements of the boundary of the
absorbing area! will form a so-calledmixed absorbing area
that stretches along the synchronized chaotic set, and from
which trajectories starting near the chaotic set cannot escape.

As the asynchronous saddle cycle~s! under variation of a
control parameter move~s! away from the synchronization
manifold, the width of the mixed absorbing area will grow.
This leads to a synchronization error that increases as
Au«2«cu. Here u«2«cu!1 denotes the distance of the con-
trol parameter from the bifurcation point.

As opposed to the distinction between locally and glo-
bally riddled basins of attraction, the distinction between soft
and hard riddling bifurcations only involves local conditions
close to the synchronization manifold. A hard riddling bifur-
cation may lead to locally or globally riddled basins of at-
traction, depending on the conditions far from the synchro-
nization manifold. As we shall show, however, immediately
after a soft riddling bifurcation, the basin of attraction can be
locally riddled only.

The purpose of the present paper is to illustrate these con-
cepts in more detail by describing three different scenarios
for the onset of riddling and for the subsequent development
of the basin of attraction for a system of two coupled logistic
maps. Each scenario is described by following the type and
location of the relevant asynchronous cycles and determine
their stable and unstable invariant manifolds. We also deter-
mine both the absorbing and mixed absorbing areas, and dis-
cuss their significance for the observed dynamics. The first
scenario illustrates how the transition from locally to glo-
bally riddled basins of attraction can occur via acontact
bifurcation between the basin of attraction for the synchro-
nized chaotic state and its absorbing area@19,21#. The sec-
ond scenario involves a direct transition to global riddling
following a subcritical transverse bifurcation of a synchro-
nized periodic orbit. In this case, the mixed absorbing area
exists before the riddling bifurcation, and disappears in the
moment of bifurcation.

The third scenario involves a long and interesting se-
quence of bifurcations following the destabilization of the
synchronous period-2 cycle in a supercritical transverse pe-
riod doubling. In this case, the asynchronous period-4 saddle
produced in the riddling bifurcation stabilizes in an inverse
subcritical period-doubling bifurcation before the contact bi-
furcation between the basin of attraction and the absorbing
area takes place. This gives rise to the emergence of a new
attracting state inside the absorbing area for the synchronized
chaotic set. Elements of this scenario were recently described
by Bischi and Gardini@22#. Finally, we present a phase dia-
gram delineating the regions in parameter space where the
various solutions exist. This provides a clear picture of the
conditions for the different scenarios to occur.

II. CONDITIONS FOR SOFT AND HARD RIDDLING

Let us consider the system

F: H x
yJ→ H f a~x!1«~y2x!

f a~y!1«~x2y!J ~2.1!

of two symmetrically coupled logistic mapsf a(x)5ax(1
2x) with 3,a<4 and22<«<2. It is well known that the
logistic map f a(x) for a.a* >3.567 . . . ~the Feigenbaum
accumulation point! undergoes a reverse cascade of ho-
moclinic bifurcations of period-2n cycles at the parameter
valuesan . At a5a0>3.678573 . . . , for instance, the fixed
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point x05121/a undergoes its first homoclinic bifurcation,
and two chaotic bands merge into a single band. Likewise,
for a5a1>3.592572 . . . , theperiod-2 cycle undergoes its
first homoclinic bifurcation, and four chaotic bands merge
into two. At each of these homoclinic bifurcation points,
f a(x) has a finite number of intervals with an absolutely
continuous invariant measure. Hence the dynamics off a(x)
is chaotic. The main diagonal$x5y% is a one-dimensional
synchronization manifold forF.

In order to delineate the regions of parameter space in
which the synchronized chaotic state is asymptotically
stable, we have previously considered the transverse stability
for each of the most important low-periodic point cyclesgn
@16#. For a5a0 we have found that the interval of
asymptotic stability is bounded by a transverse period-
doubling bifurcation of the period-6 cycle at«>21.31 and
by a transverse period-doubling of the period-2 cycle at«
>21.24. Fora5a1 , the interval of asymptotic stability for
the synchronized chaotic state stretches from«>21.46 to
«>21.16, with both the upper and the lower end being as-
sociated with a destabilization of the period-2 cycle. The
transverse destabilization of the fixed point is not associated
with any riddling bifurcation in our model.

Let us examine the bifurcations in which the period-2
cycle

x1,25y1,25
a116A~a11!~a23!

2a
~2.2!

loses its transverse stability. Results for cycles of arbitrary
periodicity can be found in Ref.@21#. The mapF:R2→R2 is
noninvertible, and it is easy to see that the Jacobian determi-
nant uDFu vanishes along two branches of a hyperbola~the
so-called critical curves@19,20#!

L05H ~x,y!:y5
a2«

2a
1

«2

4a2S x2
a22

2a D J ~2.3!

that intersect the diagonal$x5y% in the pointsxc151/2 and
xc251/22/«/a. It follows that F is a diffeomorphism in a
neighborhood of the pointsPi ~i 51 and 2! of the symmetric
period-2 cycle, provided thataÞ11A5 and aÞ1
1A41(112«)2. These provisions also imply thatn iÞ0
andn'Þ0, where

n i5 f 8~x1! f 8~x2!512~a11!~a23! ~2.4!

and

n'5„f 8~x1!22«…„f 8~x2!22«…5~112«!22~a11!~a23!

~2.5!

are the longitudinal and transverse eigenvalues for the
period-2 cycle.f 8(x) denotes the derivative off (x). More-
over, for «Þ0 and«Þ21, the first nonresonant condition
n iÞn' will be satisfied. For each of the two pointsPi on the
period-2 cycle a neighborhood will then exist in which the
transverse invariant manifoldsW' i are at leastC1 smooth
@23#. Invariance in this case obviously applies with respect to
the iterated mapF2.

In the parameter interval of interest, the symmetric
period-2 cycle is unstable in the direction of the longitudinal
manifoldWi5$x5y%. The cycle loses its transverse stability
either in a pitchfork bifurcation (n'51) for

«52 1
2 @16A~a11!~a23!11# ~2.6!

or in a period-doubling bifurcation (n'521) for

«52 1
2 @16A~a11!~a23!21#. ~2.7!

To investigate how map~2.1! acts along the transverse
manifoldsW' i we rewriteF in terms of the new variables
j5(x1y)/2 andh5(y2x)/2

F̃: H j
hJ→ H f ~j!2ah2

„f 8~j!22«…hJ , ~2.8!

where, as before,f 5 f a . The term transverse manifold is
meant to denote the manifold in which the asynchronous
cycle~s! involved in the bifurcation is~are! situated. In the
neighborhood of each period-2 cycle pointPi we can expand
the one-dimensional manifoldsW' i5$(j,h):j5w i(h)%
such that

w i~h!5xi1Bih
21~higher order terms!. ~2.9!

Linear contributions tow i vanish becauseW' i is parallel to
the h-axis for h50.

The coefficientsBi may be obtained by inserting Eq.~2.9!
into Eq. ~2.8!, and using the invariance ofW' i . This gives

Bi5a@n i ,i 111n',i
2 #/~n i2n'

2 !, ~2.10!

where n i ,i5 f 8(xi), n',i5 f 8(xi)22«, and xi 115 f (xi).
From Eq.~2.10!, Bi can be calculated provided that the sec-
ond nonresonant conditionn iÞv'

2 is satisfied. This condi-
tion, which guarantees theC2 smoothness ofW' i , will al-
ways be fulfilled sincen i,0 in the chaotic regimea.a* .

The one-dimensional mappinghi :W' i→W' i of F2 along
the transverse manifolds of the period-2 cycle takes the
asymptotic form

hi :h→n'h1Cih
31~higher order terms!. ~2.11!

Quadratic terms do not arise in this expansion because of
the symmetry of the system. Inserting Eq.~2.11! into Eq.
~2.8! and using our results~2.10! for Bi we obtain

Ci522a2F ~n',i
2 1n i ,i 11!~n',i 111n i ,in',i !

n i2n'
2 2n',i G .

~2.12!

It is well known from normal form theory that the bifur-
cations of the symmetric one-dimensional maphi will be
supercritical or subcritical depending on the sign of the prod-
uct n'Ci . ~Obviously,Ci must have the same sign for the
two transverse manifolds.! If n'Ci,0, the bifurcation is su-
percritical, and it is subcritical forn'Ci.0. Direct calcula-
tion shows thatCi is positive in the relevant parameter inter-
val. Hence we conclude that the transverse pitchfork
bifurcation of the symmetric period-2 cycle occurring at«
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521
2@16A(a11)(a23)11# is subcritical, and the trans-

verse period-doubling occurring at «52 1
2 @1

6A(a11)(a23)21# is supercritical. As an illustration to
this discussion, Fig. 1 shows the region in parameter space in
which the symmetric period-2 cycle is transversely stable.
This region is delineated by the curves~2.6! and~2.7! along
which the subcritical pitchfork and the supercritical period-
doubling bifurcations take place. In the interval 3,a,1
1A6, synchronization of the period-2 cycle occurs for arbi-
trary small values of the coupling parameter. This is the in-
terval in which the period-2 cyclex25 f (x1), x15 f (x2) is
the only existing solution for the individual map. For«50,
the two-map system displays a synchronous period-2 cycle
(x1,x1)→(x2,x2)→(x1,x1) and an antisymmetric period-2
cycle (x1,x2)→(x2,x1)→(x1,x2). Both of these cycles are
stable, and their basins of attraction are organized in a char-
acteristic chessboard structure. Moreover, except near the
ends of the stability interval 3,a,11A6, both cycles re-
main stable as« attains a small~positive or negative! value.

The bifurcation diagram in Fig. 2~a! unfolds the super-
critical transverse period-doubling bifurcations of the syn-
chronous period-2 cycle. Here,a5a0 . To the left and right
in the diagram the fully drawn horizontal lines denote the
transversely stable period-2 cycle. In each of the period-
doubling bifurcations, the period-2 saddle~denotedP2! is
turned into a repeller, and a symmetric period-4 saddle cycle
~denotedP4! is born with its unstable manifolds along the
main diagonal$x5y%. The figure shows how the same
period-4 cycle is involved in both bifurcations. This is even
more clear from the phase portrait in Fig. 2~b! where we can
follow how the period-4 saddle as the coupling parameter is
increased moves out in phase space to return to the synchro-
nous period-2 cycle. On the way, as shown in Fig. 2~a!, the
period-4 cycle undergoes a couple of saddle-node bifurca-
tions. As we shall see below, the period-4 cycle is also in-
volved in a number of additional bifurcations through which
it may stabilize in certain regions of parameter space.

Figures 3~a! and 3~b! show a similar set of diagrams for
the subcritical transverse pitchfork bifurcation of the syn-
chronous period-2 cycle that occurs at«52 1

2 @1
1A(a11)(a23)11#. The two fully drawn line segments
along the horizontal axis of Fig. 3~a! again represent the
regions of transverse stability for the period-2 cycle. The
pitchfork bifurcation takes place at the left hand edge of the
left of these intervals. The curves denotedP1 follow two
symmetric asynchronous period-1 orbits produced in a trans-
verse pitchfork bifurcation of the synchronous fixed point
P(x0 ,x0), x05121/a at «52(a21)/2 and connecting to
the fixed point at~0,0!. The figures show how two mutually
symmetric period-2 repellers~denotedP2! approach the syn-
chronous period-2 saddle from either side to annihilate with
one another and transform the saddle into a repeller. To the
right hand side of the bifurcation diagram the period-2 repel-
lers undergo an inverse period-doubling~marked PD! pro-
ducing the above mentioned symmetric period-1 repellers.

Immediately after its birth, the points of the period-4
cycle in Fig. 2~a! move away from the diagonal in accor-
dance with the usual square root relation

FIG. 1. Region of transverse stability for the symmetric period-2
cycle. Destabilization occurs via a subcritical pitchfork bifurcation
~lower curve! or via a supercritical period-doubling bifurcation~up-
per curve!. Stability regions for other low-periodic cycles may be
found in Ref.@16#. For our discussion of chaotic synchronization,
only the regiona.a* >3.569 is of interest.

FIG. 2. ~a! Bifurcation diagram for the supercritical transverse
period-doubling bifurcations of the symmetric period-2 cycle.~b!
Corresponding phase portrait showing how the position of the
period-4 saddle (P4) varies as the coupling parameter is increased.
The figure was obtained fora5a0 .
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uhu;u«2«cu1/2 ~2.13!

where«c denotes the bifurcation point andu«2«cu!1. This
result hinges on the fact that« is a normal parameter, i.e.,
that changes in« do not affect the dynamics of the synchro-
nous state. It is worth noticing that although the parameters
Ci , i 51, and 2, have the same sign at the point of bifurca-
tion, in general they do not have the same magnitude. As we
can see@Fig. 2~b!#, this implies that the two point pairs of the
asynchronous period-4 cycle do not move out along their
respective manifolds at the same speed.

Figure 4 shows the results of a numerical evaluation of
the coefficientsC1 for the upper point of the period-2 cycle.
The two curves denotedC1

PF andC1
PD refer to the transverse

destabilization via a pitchfork and a period-doubling bifurca-
tion, respectively.~It is a simple matter to obtain analytic
expressions for these curves. However, the expressions are a
little clumsy, and we have left them out here!. The curve for
C1

PF passes through zero fora53 where the symmetric
period-2 cycle first arises. The curve forC1

PD diverges for
a511A5>3.236, where the longitudinal eigenvaluen i

vanishes. This is the point where the individual mapf a(x)
displays a superstable period-2 orbit. It is also the minimal
value ofa for which a transverse period-doubling bifurcation
can occur~see Fig. 1!.

Remark:The above analysis has assumed the interacting
maps to be identical. In the presence of a small parameter
mismatch a fully symmetric period-2 cycle can no longer
exist, and the pitchfork bifurcation will be replaced by a
saddle-node bifurcation, involving the simultaneous appear-
ance or disappearance of a repeller and a saddle cycle
slightly off the main diagonal. For the period-doubling bifur-
cation the condition for a subcritical or supercritical transi-
tion will be determined by the sign of the Schwarzian deriva-
tive Sh5h-/h82(3/2)(h9/h8)2 of the map h along the
transversal manifold. If, in the moment of bifurcationSh
,0, then the bifurcation is supercritical. IfSh.0, it is sub-
critical. The simplification we have used for the symmetric
case is to takeh950.

III. EXAMPLE OF A SOFT RIDDLING BIFURCATION

Figure 5 illustrates the situation in the phase plane of our
coupled map system fora5a0 and «521.234. With this
value of a the transverse period doubling of the period-2
cycle occurs at«>21.2373. The full line along the diagonal
represents the synchronized chaotic state, and the two points
on this line indicated by open circles are the points of the
period-2 cycle that has just undergone a transverse period
doubling. In the vicinity of these points, the four points in-
dicated by circles with crosses through are the points of the
asynchronous period-4 cycle that has appeared in the bifur-
cation. The period-4 cycle is a saddle cycle with a stable
manifold that connects it with the period-2 repeller. The un-
stable manifolds of the period-4 saddle stretch along the syn-
chronization manifold. The arrows on the various stable and
unstable manifolds denote their forward directions. It should
be noted that since we are dealing with a noninvertible map,
a ~stable or unstable! manifold is allowed to intersect itself.
Note how the two point pairs of the period-4 cycle, in accor-
dance with the above discussion, have moved different dis-
tances away from the period-2 cycle. Also shown in Fig. 5 is

FIG. 3. ~a! Bifurcation diagram for one of the subcritical trans-
verse pitchfork bifurcations of the symmetric period-2 cycle.~b!
Corresponding phase portrait. The curves markedP1 and P2 , re-
spectively, show how pairs of mutually symmetric period-1 and -2
repellers move under variation of the coupling parameter.

FIG. 4. Variation of the coefficientsC1
PF and C1

PD associated,
respectively, with the transverse pitchfork and the transverse
period-doubling bifurcations of the symmetric period-2 cycle.
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the fractal boundary of the basin of attraction for the syn-
chronized chaotic state.

In order to demonstrate a number of important details,
Fig. 6 shows a magnification of the upper part of the phase
plane. Here«521.225.A denotes~part of! the synchronized
chaotic set, andP2 andP4 are points on the period-2 repeller
and the period-4 saddle cycle, respectively.

As bounded by the outmost loops of the unstable mani-
folds for the period-4 cycle~drawn as thin lines! and by
segments of the critical curvesL1–L8 ~drawn as heavier

lines!, the mixed absorbing areaA8 @19,24# completely sur-
rounds the synchronized chaotic set. With the situation de-
picted in Fig. 6, the mixed absorbing area is a closed invari-
ant set, i.e.,F(A8)5A8. Hence trajectories starting inside
the mixed absorbing area~or at its boundary! cannot leave it.
Moreover, most trajectories starting from a neighborhood
outsideA8 will follow the unstable manifolds of the period-4
saddle, fold at the critical curves~L1 or L3!, and cross into
A8. We conclude that as long as a mixed absorbing area
exists inside the basin of attraction~and no other attractor
exists within the mixed absorbing area!, the synchronized
chaotic state will attract almost all points from its neighbor-
hood.A is then a Milnor attractor, and its basin of attraction
can be locally riddled only@16#. In this way the formation in
a supercritical transverse bifurcation of a mixed absorbing
area that stretches along the synchronized chaotic state plays
a major role for restraining the amplitude of the burst away
from the synchronized state.

Surrounding the mixed absorbing area in Fig. 6, we find
the absorbing areaA ~also referred to as the trapping region
@10#!. Bounded by a finite number of segmentsLk5Fk(L0)
of images of the critical curvesL0 as given by Eq.~2.3!, the
absorbing area@19,20# has the property that trajectories that
enter this area cannot leave it again, i.e.,F(A)#A. More-
over, trajectories that start in the neighborhood of the absorb-
ing area will enter it in a finite number of iterations. The
presence of an absorbing area is a characteristic feature of
noninvertible maps. For our system of two coupled logistic
maps, the absorbing area exists in an interval of the coupling
parameter that includes part of the interval of asymptotic
stability for the synchronized chaotic state, and can stretch
beyond this interval. When, as illustrated in Fig. 6, the mixed
absorbing area falls fully within the absorbing area~and no
other attracting states thanA exists inA, almost all trajecto-
ries starting in the absorbing area will end up in the mixed
absorbing area. Finally, on the boundary of the basin of at-
traction ~and indicated by small triangles in Fig. 6! we find
the pointsP8 of a period-8 repeller. Any neighborhood of
this repeller contains a positive measure set of initial condi-
tions from which the trajectories diverge towards infinity.

As we continue to increase the coupling parameter, the
points P4 of the period-4 saddle cycle move further out
along the transverse manifolds of the period-2 repeller, and
the mixed absorbing areaA8 continues to grow until it fills
out most of the absorbing areaA. This is illustrated in Fig. 7,
where «521.21. The critical curvesLk will serve as an
envelope to the unstable manifolds, and as long as the
period-4 cycle falls within the boundary of the absorbing
area, its unstable manifolds will be restrained to this area.
Compared with Fig. 6, the period-8 repeller~and hence the
basin boundary! has moved closer to the boundary of the
absorbing area. At«>21.205 a crisis takes place as the
boundary of the absorbing area comes in contact with the
basin boundary, and the period-8 repeller crosses into the
region delineated by the critical curves. We can see that this
happens in points where the boundaries ofA andA8 coin-
cide. This marks the transition from local to global riddling
of the basin of attraction@16#.

Figure 8 shows the situation immediately after this con-
tact bifurcation has occurred. Here«521.18. The points of
the period-8 repeller now fall inside the region delineated by

FIG. 5. Situation in the phase plane immediately after the su-
percritical transverse period-doubling of the symmetric period-2
cycle. The figure shows the period-4 saddle cycle with its stable and
unstable manifolds. Also indicated are the absorbing area as
bounded by segments of critical curvesLk and the basin of attrac-
tion with its fractal boundary.«521.234.

FIG. 6. Magnification of the upper part of Fig. 5. Here the
coupling parameter is«521.225.A denotes~part of! the synchro-
nized chaotic set, andP2 andP4 are points of the period-2 repeller
and the period-4 saddle cycle, respectively. PointsP8 denoted by a
small triangle belong to a period-8 repeller, which is situated at the
boundary of the basin of attraction.
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the images of the critical curves, the absorbing area has
ceased to exist, and direct access has been opened for points
starting near the transversely unstable period-2 cycle~and its
dense set of preimages! to diverge to infinity. This is a typi-
cal example of global riddling. One can examine this transi-
tion in more detail by constructing the preimages of those
tongues of the basin of infinity that have penetrated into the
region AùA8. Immediately after the boundary crisis these
preimages can be followed backward along the unstable
manifolds that define the boundary ofA8 toward the
period-4 saddle cycle, and from here along the transverse
manifolds back towards the period-2 repeller on the main
diagonal.

Remark:To complete the present discussion, let us note
that while varying the coupling parameter from the point of

transverse destabilization of the period-2 cycle to the final
boundary crisis, we have not found evidence of the presence
of other attracting sets inA8 besides the synchronized cha-
otic state. This is the reason why we have been able to say
that the basin of attraction forA is locally riddled. However,
we cannot exclude that this is a result only of our finite
numerical accuracy. Our simulations have revealed how the
stable and unstable manifolds of the period-4 saddle intersect
in many points. This implies the existence of homoclinic
trajectories and of the complicated dynamics associated with
a Smale horseshoe. It is well known that under specific con-
ditions this can lead to the formation of Newhouse regions in
parameter space with a dense set of systems having infinitely
many attracting cycles@25,26#. The presence of such regions
causes irreducible problems mathematically as well as nu-
merically, and we shall not discuss their consequences here.

We consider the above scenario to describe the generic
transition from locally to globally riddled basins of attraction
following a supercritical riddling bifurcation in coupled map
systems when the asynchronous cycle born in the bifurcation
does not stabilize before the contact bifurcation between the
absorbing area and the basin of attraction has occurred. Our
analyses of this transition were recently criticized by Bischi
and Gardini@22#. Unfortunately, these authors did not notice
that when the contact bifurcation occurs, the boundaries of
the absorbing and the mixed absorbing areas coincide. Hence
the bifurcation involves a minimal, invariant absorbing area,
and the criticism is not justified.

In Sec. V we shall discuss a very different and much more
complicated scenario that arises fora5a1>3.592 572 . . . .
This is the parameter value for which the period-2 cycle of
the individual mapf a(x) displays its first homoclinic bifur-
cation. Here the asynchronous saddle cycle born in the rid-
dling bifurcation stabilizes in an inverse period-doubling bi-
furcation to produce an attracting state inside the absorbing
area for the synchronized chaotic set. First, however, let us
consider a generic scenario for the appearance of globally
riddled basins of attraction following ahard riddling bifur-
cation that can also be observed fora5a0 .

IV. SCENARIO FOR A HARD RIDDLING BIFURCATION

At the other end of the interval of asymptotic stability for
a5a0 , a transverse destabilization of the symmetric
period-6 cycle takes place@16#. This again occurs via a
period-doubling bifurcation (n'521). However, evaluation
of the parametersCi using the procedure described in Ref.
@21# shows that the bifurcation is subcritical (Ci,0). Hence,
before the transition occurs, the points of a period-12 repeller
are situated on either side of the symmetric period-6 cycle.
This situation is illustrated in Fig. 9~a! where we also can see
the fractal boundary of the basin of attraction for the syn-
chronized chaotic state. Closer examination reveals that the
points of the period-12 repeller fall at cusp points of the
basin boundary, and any neighborhood of these points con-
tains a positive measure set of initial conditions from which
the trajectories diverge to infinity.

Figure 9~b! is a magnification of part of the structure in
Fig. 9~a!. Here the coupling parameter«521.3. The figure
shows~the upper part of! the synchronous chaotic state with
three points of the symmetric period-6 cycle situated along

FIG. 7. For «521.21, the period-4 saddle cycle has moved
further out along the transverse manifolds of the period-2 repeller,
and the mixed absorbing areaA8 covers most of the absorbing area
A. At the same time the period-8 repeller has moved closer to the
common boundary ofA andA8.

FIG. 8. Crossing of the period-8 repeller through the segments
of critical curves and unstable manifolds that defineA, and A8
marks the transition from locally to globally riddled basins of at-
traction. There is now direct access from the neighborhood of the
transversely unstable period-2 cycle~and its dense set of preimages!
to infinity.

PRE 60 2823DESYNCHRONIZATION OF CHAOS IN COUPLED . . .



the main diagonal. Also shown is the absorbing area as
bounded by segments of the critical curvesL1–L14 ~heavy
lines!. The dots indicate where these segments connect. Out-
side the absorbing area we find six points of the period-12
repeller ~shown as circles with crosses through!. As noted
above, these points fall at cusp points of the basin boundary.
In the longitudinal direction the unstable manifolds of the
period-12 repeller again seem to wind around the synchro-
nized chaotic state. However, since these manifolds now fall
outside the absorbing area, we cannot be sure that they will
always remain bounded in the vicinity of the synchronous
set. In the present situation this appears to be the case, since
the unstable longitudinal manifolds all connect to the critical
curves and hence define a mixed absorbing area~which now
exists before the riddling bifurcation!.

As we approach the bifurcation, the points of the
period-12 repeller move through the critical curvesLk , and
the absorbing area ceases to exist. Unstable manifolds now
point out through the images of the critical curves, and tra-
jectories starting outside of the longitudinal manifolds of the
period-12 repeller will diverge. This situation is illustrated in
Fig. 10 for «521.307. Finally, at the point of bifurcation

where the period-12 repeller disappears, direct access is
opened from the symmetric period-6 cycle~as well as from
its dense set of preimages! to infinity. In accordance with the
scenario described by Laiet al. @15#, the emergence of global
riddling in this way occurs simultaneously with the destabi-
lization of the period-6 cycle in a local bifurcation.

Based on the above results we conclude that the riddling
bifurcation will behard if it is associated with a subcritical
destabilization of some orbit. The subcritical bifurcation
does not produce asynchronous saddle cycles whose unstable
manifolds can restrain the bursts of trajectories. It is possible,
of course, that saddle cycle~s! of appropriate periodicity
could exist outside the repelling cycle~s! involved in the
transverse destabilization~an example was provided by the
model considered in Ref@18#!. In this case the subcritical
riddling bifurcation might not directly produce a globally
riddled basin of attraction.

V. DESTABILIZATION SCENARIO FOR a5a1

Our last example concerns the sequence of events that
take place in connection with the destabilization of the syn-
chronized chaotic state fora5a1 and «>21.1. This sce-
nario starts with the transverse destabilization of the sym-
metric period-2 cycle in a supercritical period-doubling
bifurcation for «>21.1560. The blowout bifurcation at
which the transverse Lyapunov exponent becomes positive,
and the chaotic state loses its average attraction occurs at«
>21.0385. Hence we are interested in following the bifur-
cations that take place in the interval between«>21.1560
and21.0385.

For a5a1 , the synchronous chaotic state consists of two
separate bands. The absorbing area and mixed absorbing area
each therefore also consists of two regions that are mapped
one into the other under the action ofF. Figure 11~a! shows
the upper part of the phase plane after the transverse period-
doubling has occurred. Here«521.155. We note the two
points of the asynchronous period-4 saddle cycle situated
along the transverse manifolds of the symmetric period-2
repeller. The points of the period-4 saddle are indicated as
circles with crosses through. Together with segments of the
critical curvesL1 and L3 , the unstable manifolds of the

FIG. 9. ~a! Overview of the situation in phase plane before the
transverse destabilization of the symmetric period-6 cycle. The fig-
ure shows the asymmetric period-12 repeller with its longitudinal
manifolds.~b! Magnification of part of~a!. Note how the absorbing
area falls inside the mixed absorbing area, which now exists before
the riddling bifurcation.

FIG. 10. For «521.307 the period-12 repeller has moved
across the critical curves, and the absorbing area has ceased to exist.
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period-4 saddle define a mixed absorbing areaA8. Around
this area we find a large absorbing areaA as bounded by
segments of the iteratesL1 , L2 , L3 , andL4 of L0 .

Trajectories starting inside the mixed absorbing area can-
not escape from it. Except for a measure zero set of trajec-
tories starting from points on the external branches of the
stable manifolds of the asynchronous period-4 cycle~and
possible preimages of these manifolds!, trajectories starting
from a neighborhood of the mixed absorbing area will move
along the unstable manifolds of the period-4 saddle points
toward the points where they meet the critical curveL3 ~or
L1!. After a folding here they will be mapped into the mixed
absorbing area to soon be trapped in the smaller absorbing
area defined by the critical curvesL1 , L3 , L5 , L7 , L6 , L8 ,
L10, andL12. The transverse manifolds of the synchronous
period-2 cycle pass right between the critical curvesL5 and
L7 . Hence, in spite of the fact that the period-2 cycle has a
dense set of preimages along the main diagonal, not a single
trajectory will be able to leave the smaller absorbing area.

Remark:The smaller absorbing area represents the ab-
sorbing area that existed before the homoclinic bifurcation in
which the four-band chaotic attractor for the individual map

has merged into a two-band attractor. The smaller absorbing
area is destroyed in the homoclinic bifurcation, and as soon
as the nonlinearity parametera exceedsa1 by as little as a
part in 1011 one can start to observe how trajectories escape
along the transverse manifold of the synchronous period-2
cycle.

Immediately after the transverse destabilization of the
period-2 cycle@e.g., for «521.155 97 as shown in Fig.
11~b!# the period-4 saddle points will be situated very close
to the main diagonal and its unstable manifolds stretch along
the synchronized chaotic state as a narrow band from which
trajectories cannot escape. Hence we again observe that a
supercritical transverse bifurcation leads to a soft riddling
transition with a locally riddled basin of attraction and with
small and smoothly growing bursts of trajectories away from
the synchronized state. As we move further away from the
bifurcation point, however, a completely different sequence
of events takes place. At«>21.095 71 the period-4 saddle
cycle undergoes an inverse, subcritical period doubling in the
direction of its unstable manifold. This produces a stable
asynchronous period-4 cycle surrounded on both sides by the
points of a period-8 saddle cycle.

This situation is illustrated in Fig. 12, where a pointP4 of
the stable period-4 cycle is marked by a small square and the
neighboring pointsP8 of the period-8 saddle by circles with
small crosses. Situated along the main diagonal and embed-
ded in the synchronized chaotic attractorA, the upper point
of the period-2 repeller has been indicated by a small tri-
angle. Also shown in this figure are the stable and unstable
manifolds of the period-8 saddle. The white regionb~`! in
the top right corner belongs to the basin of infinity. With a
gray shading, the areab(A) is the basin of attraction for the
synchronized chaotic state. As in the previous figures, the
boundary between these two basins is fractal.

The inverse period-doubling bifurcation at«>21.09571
has produced a new attracting state inside the former basin of
attraction for the synchronized chaotic state. The immediate

FIG. 11. ~a! Upper part of the phase plane fora5a1 and «5
21.155. We observe a larger and a smaller absorbing area together
with a mixed absorbing area delineated by the unstable manifolds of
the asymmetric period-4 saddle.~b! Magnification of part of the
phase plane for«521.155 97. Note how the transverse manifolds
of the period-2 repeller pass right between the critical curves.

FIG. 12. The asymmetric period-4 cycle has undergone an in-
verse, subcritical period-doubling transition, producing a stable
period-4 cycleP4 and a period-8 saddleP8 . The stable manifolds
of this saddle delineate the immediate basin for the period-4 node.
The figure was obtained for«521.08.
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basin for the period-4 cycle~shown crosshatched in Fig. 12!
is defined by the stable manifolds of the period-8 saddle.
Emanating from the symmetric period-2 repeller, these mani-
folds delineate a basin that stretches as a set of tongues all
the way down to the main diagonal. Immediately after the
stabilization of the period-4 cycle these tongues will be very
narrow and they will not intersect the smaller absorbing area.
As a consequence trajectories that start within this area will
not be able to reach the stable period-4 cycle, and the basin
of attraction for the synchronized chaotic state will remain
locally riddled only.

Besides the immediate basin, the basin of attraction for
the asynchronous period-4 cycle also consists of a set of
secondary tongues. Most prominent among these are the
tongues that emanate from the points where the critical
curvesL1 andL3 intersect the main diagonal. These second-
ary tongues are also clearly visible~crosshatched! in Fig. 12.
Like the primary tongues they are delineated by sharp and
well-defined edges.

If the value of the nonlinearity parametera exceedsa1 by
the smallest amount, the smaller absorbing area ceases to
exist. The basin of attraction for the asynchronous period-4
cycle will then include tongues that emanate from the dense
set of preimages of the period-2 repeller in the synchronized
chaotic setA, and the basin of attraction forA will be glo-
bally riddled. In this case the transition to global riddling is
accomplished via two local bifurcations: first the transverse
supercritical period-doubling of the symmetric period-2
cycle and thereafter the stabilization of the asynchronous
period-4 cycle in an inverse subcritical period-doubling.
However, the new tongues tend to be extremely narrow, and
in the numerical calculations they show up only as randomly
scattered points within the area that has otherwise been as-
signed tob(A).

A similar transition to global riddling has recently been
described by Astakhovet al. @27# for a pair of nonlinearly
coupled logistic maps. In their main scenario it is the fixed
point that first undergoes a transverse destabilization in the
form of a supercritical period doubling. After similar period-
doubling bifurcations of the symmetric period-2, -4, -8, and
-16 cycles, the asynchronous period-2 saddle cycle produced
in the first transverse bifurcation stabilizes in an inverse, sub-
critical pitchfork bifurcation, giving way to a globally
riddled basin of attraction for the synchronous chaotic state.

We would like to emphasize, however, that the globally
riddled basins of attraction created through these processes
have a fairly unusual structure. First, the main tongues are
delineated by the stable manifolds of a saddle cycle~or a pair
of saddle cycles!. By contrast, in the commonly described
form of global riddling@10,11,16#, the repelling tongues are
defined only in terms of bundles of trajectories that follow an
unstable manifold away from the synchronized chaotic state.
In addition there is a prominent set of secondary tongues that
also have sharp and well-defined edges. Finally, the remain-
ing tongues form an extremely thin structure that shows up
in the numerical calculations only as randomly scattered
points from which the trajectories eventually reach the asym-
metric point attractor.

As the coupling parameter is further increased, the phase
portrait starts to become complicated. At«521.085, the
asynchronous period-4 cycle is transformed from a stable

node into a stable focus~i.e., the eigenvalues become com-
plex conjugated!, and at«>21.0758 the period-8 saddle
undergoes a supercritical pitchfork bifurcation in the direc-
tion of its stable manifold. This produces a period-8 repeller
surrounded by two period-8 saddles at the boundary of the
immediate basin of attraction for the period-4 focus. At«
>21.0625 a subharmonic saddle-node bifurcation@28#
takes place in which a stable period-12 cycle is born together
with a period-12 saddle. This situation is illustrated in Fig.
13, where«521.0615.

We now have two coexisting stable solutions in the repel-
ling tongues emanating from the symmetric period-2 repel-
ler. In Fig. 13, a pointP4 of the period-4 focus is indicated
by a square drawn with relatively heavy lines, and the points
P12 of the period-12 node are indicated by finer squares. The
immediate basin of attraction for the period-12 cycle takes a
very unusual form, namely, as a set of discs surrounded by
topological circles which are formed by the stable manifold
of the period-12 saddle~points of which are shown as small
circles!. This peculiar structure, in which the same stable
manifold as a closed curve approaches the saddle point from
both sides, is made possible by virtue of the noninvertibility
of the mapF. This noninvertibility allows the preimages of
the period-12 saddle cycle to serve as points of separation
between the two directions of the manifolds. The complete
basin of attraction for the period-12 node consists of these
immediate disc-formed domains together with all their pre-
images in the main tongues as well as in their preimages. A
similar basin structure was found in Ref.@29# for a two-
dimensional, noninvertible map derived from a problem in
radiophysics.

The next transformations of the phase portrait to occur
involve a transcritical 1:3 subharmonic bifurcation@28# of
the period-4 focus at«>21.0581, and a Hopf bifurcation of
the stable period-12 solution at«>21.0562. In the first of
these bifurcations the points of the period-12 saddle cycle
pass right through the points of the period-4 focus and de-
stabilize the latter cycle. Figure 14 illustrates the basins of
attraction that exist after this bifurcation. Here«

FIG. 13. A stable period-12 cycle has been born together with a
period-12 saddle in a subharmonic saddle-node bifurcation. The
stable manifold of the period-12 saddle defines discs shaped imme-
diate basins for the period-12 node. Here«521.0615.
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521.0564, and the points of the period-12 saddle are again
shown as small circles. The period-12 focus is now the only
attracting set inside the tongues that emanate from the syn-
chronous period-2 cycle. The Hopf bifurcation at«
521.0581 produces a period-12 invariant circle~referred to
as a torus! T12 corresponding initially~with high probability!
to quasiperiodic motion. With a further increase of the cou-
pling parameter, the dynamics becomes noninvertible and
the torus breaks down@30#, producing either regular periodic
solutions or chaos in the form of a so-called Cantor torus.
In both cases we can have either a single stable solution or
two coexisting and mutually symmetric attractors. For«
P@21.054,21.053#, for instance, the dynamics is reduced
to two symmetrically located stable period-12 solutions and
two saddle cycles of the same period.

Remark:This type of organization appears to be charac-
teristic for coupled symmetrical map systems. In a detailed
study of bifurcation phenomena in systems of diffusively
coupled logistic maps, Giberti and Vernia@31# found that the
presence of closed invariant manifolds containing periodic
orbits can play a prominent role for the dynamics. Typically,
for anN-dimensional system, such a manifold will hold up to
N stable node solutions andN saddles. In the direction nor-
mal to the manifold the attraction can be relatively strong so
that trajectories rapidly settle onto the closed invariant curve.
Along the manifold, on the other hand, the action of the map
can be nearly indistinguishable from the identity transforma-
tion, and the dynamics may be very slow. Hence, one can
observe extremely long transients.

For other values of the coupling parameter, the dynamics
on the Cantor torus produced through the breakdown ofT12
involves two coexisting chaotic attractors. For«
521.0517, for instance, two (5312)-piece chaotic attrac-
tors exist. At«>21.051 34, a single 12-piece chaotic attrac-
tor is born and for slightly higher values of the coupling
parameter, the 12-piece attractor merges into a four-piece
attractor. This last process gives rise to the appearance of
so-called rare points@32#, indicating that merging takes place
across a fractal basin boundary. Finally, at«>21.0458 the
chaotic attractor and its basin of attraction disappear in a

boundary crises, leaving only a chaotic saddle of period 4 in
the region around the original asynchronous period-4 cycle.
Figure 15 shows a phase portrait for«521.0513. For this
value of the control parameter, our coupled map systemF
displays a 12-piece chaotic attractor situated in the repelling
tongues issued from the points of the symmetric period-2
cycles. As described above, this attractor has been produced
via breakdown~loss of differentiability! of the 12-piece torus
T12. Also shown in the figure are the locations of the
period-4 and -12 cycles, both of which are now unstable
focuses.

This completes our discussion of the complex scenario
that unfolds after the supercritical transverse destabilization
of the symmetric period-2 cycle. After the asynchronous cha-
otic attractor has disappeared in a boundary crisis, no other
attracting set is observed inside the larger absorbing area,
and the basin of attraction for the synchronized chaotic state
remains locally riddled until, at«>21.0385 a blowout bi-
furcation takes place. In this bifurcation the typical trans-
verse Lyapunov exponent for trajectories onA becomes posi-
tive, and the synchronized chaotic state loses its average
attraction. However, the larger absorbing areaA still exists
inside the basin of attraction, and, as described in Ref.@16#,
the blowout bifurcation leads to on-off intermittency. The
chaotic attractor spreads over the whole area of the absorbing
set. However, trajectories starting near the synchronization
manifold cannot diverge to infinity. For slightly higher val-
ues of the coupling parameter, the two-dimensional chaotic
attractor undergoes an inverse boundary crisis by which it
decomposes into two mutually symmetric chaotic attractors.
For «521, these attractors are both restricted to one-
dimensional manifolds, and one can observe the phenom-
enon of intermingled basins of attraction@16#. Each attractor
here has a basin that is riddled with initial conditions that
lead to the other attractor. The mutually symmetric chaotic
attractors finally disappear in a boundary crisis at«
>20.935. When this occurs, the larger absorbing area in

FIG. 14. A transcritical 1:3 subharmonic bifurcation has trans-
formed the stable period-4 focus into an unstable focus. The small
circles are points of the period-12 saddle that have passed right
through the period-4 focus. Here«521.0564.

FIG. 15. For«521.0513, a single 12-piece chaotic attractor
exists in the repelling tongues emanating from the symmetric
period-2 repeller. As the coupling parameter is further increased,
the 12-piece chaotic attractor merges into a four-piece attractor to
finally disappear together with its basin of attraction in a boundary
crisis.
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Fig. 11 has made contact with the basin boundary and,
hence, has ceased to exist.

The phase diagram in Fig. 16~a! gives an overview of the
main bifurcations involved in the above scenarios, and clari-
fies the difference between the scenarios observed fora
5a0 and fora5a1 . In this diagram the crosshatched region
to the left represents parameter values for which the symmet-
ric period-2 cycle is transversely stable~compare with Fig.
1!. At the right hand edge of this region, the period-2 cycle
undergoes a supercritical transverse period doubling, produc-
ing a period-4 saddle cycle outside the main diagonal. The
vertically crosshatched finger to the right of this bifurcation
curve represents the regions of parameter space in which
attracting states exist in the repelling tongues emanating
from the points of the period-2 repeller. The left hand edge
of this finger is the bifurcation curve in which the asymmet-
ric period-4 saddle stabilizes in an inverse, subcritical period
doubling. The broken curve running through the middle of
the finger is the Hopf bifurcation curve for the period-4
cycle, and the right hand edge of the finger represents the

boundary crisis in which a four-piece chaotic attractor disap-
pears through collision with its basin boundary.

The curve marked CB represents the contact bifurcation
between the absorbing area and the basin boundary for the
synchronized chaotic stateA. For a5a0 , as the coupling
parameter is increased, the contact bifurcation occurs before
the stabilization of the asynchronous period-4 cycle. This
leads to the scenario that we described in Sec. III. Here the
transition from local to global riddling of the basin of attrac-
tion for A takes place via the contact bifurcation. Fora
5a1 , on the other hand, the asymmetric period-4 cycle sta-
bilizes before the contact bifurcation, and the scenario de-
scribed in the present section takes place. If the nonlinearity
parameter is precisely equal toa1 , we do not observe a
transition to global riddling. For a value ofa slightly larger
than a1 , however, we observe a transition to the peculiar
form of global riddling that manifests itself in the form of
randomly scattered dots within the region otherwise assigned
as the basin forA @27#.

Figure 16~b! provides a little more detail about the bifur-
cation structure. Again, the vertically crosshatched region
represents parameter values for which stable solutions exist
inside the repelling tongues issued from the symmetric
period-2 cycle. The left edge is the bifurcation curve in
which the asynchronous period-4 cycle stabilizes, and the
right edge represents the boundary crisis where the repelling
tongues disappear. The narrower, horizontally crosshatched
area is the region where the stable period-12 cycle exists.
This cycle arises in a subharmonic saddle-node bifurcation to
be destabilized at higher values of the coupling parameter in
a Hopf bifurcation leading to the above mentioned 12-piece
torusT12. The punctuated curve running through the middle
of the finger again represents the bifurcations in which the
asynchronous period-4 cycle loses its stability. Abovea
>3.64, where the period-12 cycle has not yet appeared, this
happens via a Hopf bifurcation. Fora,3.64, however, the
period-4 cycle loses its stability in a 1:3 subharmonic tran-
scritical bifurcation.

At the other end of the interval of asymptotic stability for
a5a1 , the transverse destabilization takes place in the form
of a subcritical pitchfork bifurcation of the symmetric
period-2 cycle at«>21.46. This leads directly to a globally
riddled basin of attraction@16#. Let us finally note that, for
a5a1 , there is an additional interval of weak stability for
the synchronized chaotic state around«50.3. However, this
interval does not contain regions of asymptotic stability for
the chaotic set. Neither is there an absorbing area. Hence the
basin of attraction is globally riddled in the whole interval.

VI. CONCLUSION

One of the main problems relating to the application of
chaos synchronization methods concerns the behavior of the
coupled system once the synchronization breaks down. In
certain situations, one can observe an abrupt transition to a
state in which the trajectories can diverge far out in phase
space. In other situations the dynamics shows minor and
smoothly appearing bursts away from the synchronized cha-
otic state. Considering two coupled identical, one-
dimensional maps, we have derived exact analytical condi-
tions for the transverse destabilization of the period-2 cycle

FIG. 16. ~a! Phase diagram illustrating the region~vertically
crosshatched! in which attracting states exist inside the repelling
tongues emanating from the symmetric period-2 cycle. The triangu-
lar region to the left is the region where the symmetric period-2
cycle is transversely stable~compare with Fig. 1!. ~b! Magnification
illustrating the region of stability for the period-12 cycle~horizon-
tally crosshatched!. The curve marked CB represents the contact
bifurcation.
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to be either subcritical or supercritical. In Ref.@21# we pro-
vided the results for the generic case of ann-periodic cycle.

Based on these results, we conjecture that the riddling
bifurcation will be hard or soft depending on the subcritical
or supercritical nature of the first transverse destabilization of
a period cycle. Immediately after a supercritical transverse
bifurcation, the unstable manifolds of the emerged saddle
cycle~s! will stretch along the synchronization manifold. To-
gether with segments of critical curves, segments of these
manifolds will define a closed invariant region~the mixed
absorbing area! from which trajectories cannot escape. Fol-
lowing a subcritical transverse bifurcation, on the other hand,
no such mixed absorbing area will exist after the bifurcation,
and direct access may be created for the trajectories to move
far away.

Our analysis is based on the assumption that the first orbit
to lose its transverse stability is a cycle. As shown by Hunt
and Ott@33#, this is the generic situation. In their discussion
of orbits with optimal properties, they conjectured that for a
typical one-dimensional map, nonperiodic orbits with opti-
mal properties occur on a set of zero Lebesgue measure in
parameter space. Moreover, the measure of parameter values
for which the optimal orbit has a period greater than some
interger N decreases exponentially withN. ~The optimal
property of significance for our analysis is a transverse ei-
genvalue that exceeds unity.!

We have also described two different scenarios by which
global riddling of the basin of attraction can arise after an
initial supercritical riddling bifurcation. This analysis has
clearly emphasized the important roles played by the con-
cepts of absorbing and mixed absorbing areas developed
mainly by Miraet al. @19# and applied and extended by Bis-
chi, Stefanini, and Gardini@20#. In the first scenario the tran-
sition from locally to globally riddled basins of attraction
occurs in a contact bifurcation as a repelling orbit situated at
the boundary of the basin of attraction crosses the common
boundaries for the absorbing and the mixed absorbing areas.
In the second scenario the transition to the globally riddled
basin of attraction~for a.a1! occurs via a secondary local
bifurcation. This bifurcation stabilizes the saddle cycle pro-
duced in the soft riddling bifurcation, and hence creates a
new attracting state inside the absorbing area. It is worth
noticing that the characters of the globally riddled basins of
attraction generated by these two scenarios are quite differ-
ent.

Let us finally note that although we have considered a
simple system of only two coupled logistic maps, our model
is directly related to the problem of clustering in globally
coupled map systems as described by Kaneko@7#. To illus-

trate this relation let us consider theK-dimensional coupled
map system

xn11~ i !5 f „xn~ i !…1
2«

K (
j 51

K

$ f „xn~ j !…2 f „xn~ i !…%,

~6.1!

where « is the coupling constant andf (x)5ax(12x) the
one-dimensional logistic map.n51,2, . . . denotes the dis-
crete time variable, andi , j 51,2, . . . ,K is a number associ-
ated with the individual map.a is assumed to be given a
value such that the dynamics off (x) is chaotic. As shown by
Kaneko@7#, between the turbulent states at low values of the
coupling parameter and the fully synchronized~or coherent!
state at high values of«, there is a coupling interval where
the asymptotic behavior of~6.1! is dominated by two-cluster
dynamics. Under these conditions we can make the identifi-
cations

xn[xn~1!5¯5xn~K1!,
~6.2!

yn[xn~K111!5¯5xn~K !,

whereK1(1<K1,K) is the number of oscillators in one of
the clusters. It is now easy to see that the variablesx andy
satisfy the relations

xn115 f ~xn!12«
K2K1

K
„f ~yn!2 f ~xn!…,

~6.3!

yn115 f ~yn!12«
K1

K
„f ~xn!2 f ~yn!….

If, finally, K15K/2, system~6.3! reduces to a system of
two symmetrically coupled logistic maps with nonlinear cou-
pling. Hence we conclude that the transition from one- to
two-cluster behavior in theK-dimensional, globally coupled
map system will follow the same general scenarios as we
described above.

Particularly when the chaotic dynamics of the individual
map is highly developed~i.e., for large values of the nonlin-
earity parametera!, instead of two-cluster dynamics one
finds a glassy phase where a couple of large clusters coexist
with many small clusters@7#. From a thermodynamic point
of view the glassy phase may be interpreted as a frozen dis-
equilibrium structure similar to the frozen states that one can
observe in spin glass models. From the point of view of our
more detailed bifurcation analysis, however, the glassy phase
arises from the existence, together with the synchronized
chaotic state, of stable asynchronous solutions that each
commands a certain basin of attraction.
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