155 research outputs found

    Multi-wavelength observations of 1RXH J173523.7-354013: revealing an unusual bursting neutron star

    Get PDF
    On 2008 May 14, the Burst Alert Telescope aboard the Swift mission triggered on a type-I X-ray burst from the previously unclassified ROSAT object 1RXH J173523.7-354013, establishing the source as a neutron star X-ray binary. We report on X-ray, optical and near-infrared observations of this system. The X-ray burst had a duration of ~2 h and belongs to the class of rare, intermediately long type-I X-ray bursts. From the bolometric peak flux of ~3.5E-8 erg/cm^2/s, we infer a source distance of D<9.5 kpc. Photometry of the field reveals an optical counterpart that declined from R=15.9 during the X-ray burst to R=18.9 thereafter. Analysis of post-burst Swift/XRT observations, as well as archival XMM-Newton and ROSAT data suggests that the system is persistent at a 0.5-10 keV luminosity of ~2E35 (D/9.5 kpc)^2 erg/s. Optical and infrared photometry together with the detection of a narrow Halpha emission line (FWHM=292+/-9 km/s, EW=-9.0+/-0.4 Angstrom) in the optical spectrum confirms that 1RXH J173523.7-354013 is a neutron star low-mass X-ray binary. The Halpha emission demonstrates that the donor star is hydrogen-rich, which effectively rules out that this system is an ultra-compact X-ray binary.Comment: Accepted for publication in MNRAS, 13 pages, 6 figures, 5 table

    Fading hard X-ray emission from the Galactic Centre molecular cloud Sgr B2

    Full text link
    The centre of our Galaxy harbours a 4 million solar mass black hole that is unusually quiet: its present X-ray luminosity is more than 10 orders of magnitude less than its Eddington luminosity. The observation of iron fluorescence and hard X-ray emission from some of the massive molecular clouds surrounding the Galactic Centre has been interpreted as an echo of a past flare. Alternatively, low-energy cosmic rays propagating inside the clouds might account for the observed emission, through inverse bremsstrahlung of low energy ions or bremsstrahlung emission of low energy electrons. Here we report the observation of a clear decay of the hard X-ray emission from the molecular cloud Sgr B2 during the past 7 years thanks to more than 20 Ms of INTEGRAL exposure. The measured decay time is compatible with the light crossing time of the molecular cloud core . Such a short timescale rules out inverse bremsstrahlung by cosmic-ray ions as the origin of the X ray emission. We also obtained 2-100 keV broadband X-ray spectra by combining INTEGRAL and XMM-Newton data and compared them with detailed models of X-ray emission due to irradiation of molecular gas by (i) low-energy cosmic-ray electrons and (ii) hard X-rays. Both models can reproduce the data equally well, but the time variability constraints and the huge cosmic ray electron luminosity required to explain the observed hard X-ray emission strongly favor the scenario in which the diffuse emission of Sgr B2 is scattered and reprocessed radiation emitted in the past by Sgr A*. Using recent parallax measurements that place Sgr B2 in front of Sgr A*, we find that the period of intense activity of Sgr A* ended between 75 and 155 years ago.Comment: Accepted for publication in ApJ. 10 pages, 5 figure

    Discovery of a superluminal Fe K echo at the Galactic Center: The glorious past of Sgr A* preserved by molecular clouds

    Full text link
    We present the result of a study of the X-ray emission from the Galactic Centre (GC) Molecular Clouds (MC) within 15 arcmin from Sgr A*. We use XMM-Newton data (about 1.2 Ms of observation time) spanning about 8 years. The MC spectra show all the features characteristic of reflection: i) intense Fe Kalpha, with EW of about 0.7-1 keV, and the associated Kbeta line; ii) flat power law continuum and iii) a significant Fe K edge (tau~0.1-0.3). The diffuse low ionisation Fe K emission follows the MC distribution, nevertheless not all MC are Fe K emitters. The long baseline monitoring allows the characterisation of the temporal evolution of the MC emission. A complex pattern of variations is shown by the different MC, with some having constant Fe K emission, some increasing and some decreasing. In particular, we observe an apparent super-luminal motion of a light front illuminating a Molecular nebula. This might be due to a source outside the MC (such as Sgr A* or a bright and long outburst of a X-ray binary), while it cannot be due to low energy cosmic rays or a source located inside the cloud. We also observe a decrease of the X-ray emission from G0.11-0.11, behaviour similar to the one of Sgr B2. The line intensities, clouds dimensions, columns densities and positions with respect to Sgr A*, are consistent with being produced by the same Sgr A* flare. The required high luminosity (about 1.5~10^39 erg/s) can hardly be produced by a binary system, while it is in agreement with a flare of Sgr A* fading about 100 years ago. The low intensity of the Fe K emission coming from the 50 and the 20 km/s MC places an upper limit of 10^36 erg/s to the mean luminosity of Sgr A* in the last 60-90 years. The Fe K emission and variations from these MC might have been produced by a single flare of Sgr A*.Comment: ApJ in press 17 pages, 14 Figures, 3 table

    Simultaneous Multi-Wavelength Observations of Sgr A* during 2007 April 1-11

    Full text link
    We report the detection of variable emission from Sgr A* in almost all wavelength bands (i.e. centimeter, millimeter, submillimeter, near-IR and X-rays) during a multi-wavelength observing campaign. Three new moderate flares are detected simultaneously in both near-IR and X-ray bands. The ratio of X-ray to near-IR flux in the flares is consistent with inverse Compton scattering of near-IR photons by submillimeter emitting relativistic particles which follow scaling relations obtained from size measurements of Sgr A*. We also find that the flare statistics in near-IR wavelengths is consistent with the probability of flare emission being inversely proportional to the flux. At millimeter wavelengths, the presence of flare emission at 43 GHz (7mm) using VLBA with milli-arcsecond spatial resolution indicates the first direct evidence that hourly time scale flares are localized within the inner 30×\times70 Schwarzschild radii of Sgr A*. We also show several cross correlation plots between near-IR, millimeter and submillimeter light curves that collectively demonstrate the presence of time delays between the peaks of emission up to three hours. The evidence for time delays at millimeter and submillimeter wavelengths are consistent with the source of emission being optically thick initially followed by a transition to an optically thin regime. In particular, there is an intriguing correlation between the optically thin near-IR and X-ray flare and optically thick radio flare at 43 GHz that occurred on 2007 April 4. This would be the first evidence of a radio flare emission at 43 GHz delayed with respect to the near-IR and X-ray flare emission.Comment: replaced with revised version 57 pages, 28 figures, ApJ (in press

    The two states of Sgr A* in the near-infrared: bright episodic flares on top of low-level continuous variability

    Full text link
    In this paper we examine properties of the variable source Sgr A* in the near-infrared (NIR) using a very extensive Ks-band data set from NACO/VLT observations taken 2004 to 2009. We investigate the variability of Sgr A* with two different photometric methods and analyze its flux distribution. We find Sgr A* is continuously emitting and continuously variable in the near-infrared, with some variability occurring on timescales as long as weeks. The flux distribution can be described by a lognormal distribution at low intrinsic fluxes (<~5 mJy, dereddened with A_{Ks}=2.5). The lognormal distribution has a median flux of approximately 1.1 mJy, but above 5 mJy the flux distribution is significantly flatter (high flux events are more common) than expected for the extrapolation of the lognormal distribution to high fluxes. We make a general identification of the low level emission above 5 mJy as flaring emission and of the low level emission as the quiescent state. We also report here the brightest Ks-band flare ever observed (from August 5th, 2008) which reached an intrinsic Ks-band flux of 27.5 mJy (m_{Ks}=13.5). This flare was a factor 27 increase over the median flux of Sgr A*, close to double the brightness of the star S2, and 40% brighter than the next brightest flare ever observed from Sgr~A*.Comment: 14 pages, 6 figures, accepted for publication in Ap

    Soft gamma-ray constraints on a bright flare from the Galactic Center supermassive black hole

    Full text link
    Sagittarius A* (Sgr A*) is the supermassive black hole residing at the center of the Milky Way. It has been the main target of an extensive multiwavelength campaign we carried out in April 2007. Herein, we report the detection of a bright flare from the vicinity of the horizon, observed simultaneously in X-rays (XMM/EPIC) and near infrared (VLT/NACO) on April 4th for 1-2 h. For the first time, such an event also benefitted from a soft gamma-rays (INTEGRAL/ISGRI) and mid infrared (VLT/VISIR) coverage, which enabled us to derive upper limits at both ends of the flare spectral energy distribution (SED). We discuss the physical implications of the contemporaneous light curves as well as the SED, in terms of synchrotron, synchrotron self-Compton and external Compton emission processes.Comment: 30 pages, 5 figures, accepted for publication in AS

    Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library.

    Get PDF
    Although we now have a wealth of information on the transcription patterns of all the genes in the Drosophila genome, much less is known about the properties of the encoded proteins. To provide information on the expression patterns and subcellular localisations of many proteins in parallel, we have performed a large-scale protein trap screen using a hybrid piggyBac vector carrying an artificial exon encoding yellow fluorescent protein (YFP) and protein affinity tags. From screening 41 million embryos, we recovered 616 verified independent YFP-positive lines representing protein traps in 374 genes, two-thirds of which had not been tagged in previous P element protein trap screens. Over 20 different research groups then characterized the expression patterns of the tagged proteins in a variety of tissues and at several developmental stages. In parallel, we purified many of the tagged proteins from embryos using the affinity tags and identified co-purifying proteins by mass spectrometry. The fly stocks are publicly available through the Kyoto Drosophila Genetics Resource Center. All our data are available via an open access database (Flannotator), which provides comprehensive information on the expression patterns, subcellular localisations and in vivo interaction partners of the trapped proteins. Our resource substantially increases the number of available protein traps in Drosophila and identifies new markers for cellular organelles and structures.This work was supported by a project grant from the Wellcome Trust [076739], by a Wellcome Trust Principal Research Fellowship to D.StJ. [049818 and 080007], and by core support from the Wellcome Trust [092096] and Cancer Research UK [A14492].This is the final version of the article. It was first available from The Company of Biologists via http://dx.doi.org/10.1242/dev.11105

    X-ray hiccups from SgrA* observed by XMM-Newton. The second brightest flare and three moderate flares caught in half a day

    Full text link
    [truncated] In Spring 2007, we observed SgrA* with XMM with a total exposure of ~230ks. We have performed timing and spectral analysis of the new X-ray flares detected during this campaign. To study the range of flare spectral properties, in a consistent manner, we have also reprocessed, using the same analysis procedure and the latest calibration, archived XMM data of previously reported rapid flares. The dust scattering was taken into account during the spectral fitting. We also used Chandra archived observations of the quiescent state of SgrA* for comparison. On April 4, 2007, we observed for the first time within a time interval of ~1/2 day, an enhanced incidence rate of X-ray flaring, with a bright flare followed by three flares of more moderate amplitude. The former event represents the second brightest X-ray flare from Sgr A* on record. This new bright flare exhibits similar light-curve shape (nearly symmetrical), duration (~3ks) and spectral characteristics to the very bright flare observed in October 3, 2002. The measured spectral parameters of the new bright flare, assuming an absorbed power law model taken into account dust scattering effect, are N_H=12.3(+2.1,-1.8)e22 cm-2 and Gamma~2.3+/-0.3 calculated at the 90% c.l. The spectral parameter fits of the sum of the three following moderate flares, while lower, are compatible within the error bars with those of the bright flares. The column density found, for a power-law, during the flares is at least two times higher than the value expected from the (dust) visual extinction toward SgrA* (AV~25 mag). However, our fitting of the SgrA* quiescent spectra obtained with Chandra shows that an excess of column density is already present during the non-flaring phase. The two brightest X-ray flares observed so far from SgrA* exhibited similar soft spectra.Comment: Accepted for publication in A&A, 9 pages, 6 figures (online material: 2 pages and 3 figures

    OPEN Introduction: Address as Social Action Across Cultures and Contexts

    Full text link
    This is the introductory chapter of Address Practice as Social Action: European Perspectives. It is open access under a CC BY license.How we address one another says a great deal about our social relationships and which groups in society we belong to. This edited volume examines address choices in a range of everyday interactions taking place in Dutch, Finnish, Flemish, French, German, Italian and the two national varieties of Swedish, Finland Swedish and Sweden Swedish
    corecore