110 research outputs found

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Шляхи підвищення ефективності використання виробничих ресурсів сільськогосподарських підприємств

    Get PDF
    Single-phase polycrystalline samples and single crystals of the complex boride phases Ti8Fe3Ru18B8 and Ti7Fe4Ru18B8 have been synthesized by arc melting the elements. The phases were characterized by powder and single-crystal X-ray diffraction as well as energy-dispersive X-ray analysis. They are new substitutional variants of the Zn11Rh18B8 structure type, space group P4/mbm (no. 127). The particularity of their crystal structure lies in the simultaneous presence of dumbbells which form ladders of magnetically active iron atoms along the [001] direction and two additional mixed iron/titanium chains occupying Wyckoff sites 4h and 2b. The ladder substructure is ca. 3.0 Å from the two chains at the 4h, which creates the sequence chain–ladder–chain, establishing a new structural and magnetic motif, the scaffold. The other chain (at 2b) is separated by at least 6.5 Å from this scaffold. According to magnetization measurements, Ti8Fe3Ru18B8 and Ti7Fe4Ru18B8 order ferrimagnetically below 210 and 220 K, respectively, with the latter having much higher magnetic moments than the former. However, the magnetic moment observed for Ti8Fe3Ru18B8 is unexpectedly smaller than the recently reported Ti9Fe2Ru18B8 ferromagnet. The variation of the magnetic moments observed in these new phases can be adequately understood by assuming a ferrimagnetic ordering involving the three different iron sites. Furthermore, the recorded hysteresis loops indicate a semihard magnetic behavior for the two phases. The highest Hc value (28.6 kA/m), measured for Ti7Fe4Ru18B8, lies just at the border of those of hard magnetic materials

    Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

    Full text link
    The determination of the energy spectra of small spin systems as for instance given by magnetic molecules is a demanding numerical problem. In this work we review numerical approaches to diagonalize the Heisenberg Hamiltonian that employ symmetries; in particular we focus on the spin-rotational symmetry SU(2) in combination with point-group symmetries. With these methods one is able to block-diagonalize the Hamiltonian and thus to treat spin systems of unprecedented size. In addition it provides a spectroscopic labeling by irreducible representations that is helpful when interpreting transitions induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure

    Mega-analysis methods in ENIGMA: the experience of the generalized anxiety disorder working group

    Get PDF
    The ENIGMA group on Generalized Anxiety Disorder (ENIGMA‐Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega‐analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between‐country transfer of subject‐level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega‐analyses

    Bupropion for the treatment of apathy in Huntington's disease:A multicenter, randomised, double-blind, placebo-controlled, prospective crossover trial

    Get PDF
    OBJECTIVE:To evaluate the efficacy and safety of bupropion in the treatment of apathy in Huntington's disease (HD). METHODS:In this phase 2b multicentre, double-blind, placebo-controlled crossover trial, individuals with HD and clinical signs of apathy according to the Structured Clinical Interview for Apathy-Dementia (SCIA-D), but not depression (n = 40) were randomized to receive either bupropion 150/300mg or placebo daily for 10 weeks. The primary outcome parameter was a significant change of the Apathy Evaluation Scale (AES) score after ten weeks of treatment as judged by an informant (AES-I) living in close proximity with the study participant. The secondary outcome parameters included changes of 1. AES scores determined by the patient (AES-S) or the clinical investigator (AES-C), 2. psychiatric symptoms (NPI, HADS-SIS, UHDRS-Behavior), 3. cognitive performance (SDMT, Stroop, VFT, MMSE), 4. motor symptoms (UHDRS-Motor), 5. activities of daily function (TFC, UHDRS-Function), and 6. caregiver distress (NPI-D). In addition, we investigated the effect of bupropion on brain structure as well as brain responses and functional connectivity during reward processing in a gambling task using magnetic resonance imaging (MRI). RESULTS:At baseline, there were no significant treatment group differences in the clinical primary and secondary outcome parameters. At endpoint, there was no statistically significant difference between treatment groups for all clinical primary and secondary outcome variables. Study participation, irrespective of the intervention, lessened symptoms of apathy according to the informant and the clinical investigator. CONCLUSION:Bupropion does not alleviate apathy in HD. However, study participation/placebo effects were observed, which document the need for carefully controlled trials when investigating therapeutic interventions for the neuropsychiatric symptoms of HD. TRIAL REGISTRATION:ClinicalTrials.gov 01914965

    A functional genetic variation of SLC6A2 repressor hsa-miR-579-3p upregulates sympathetic noradrenergic processes of fear and anxiety

    Get PDF
    Increased sympathetic noradrenergic signaling is crucially involved in fear and anxiety as defensive states. MicroRNAs regulate dynamic gene expression during synaptic plasticity and genetic variation of microRNAs modulating noradrenaline transporter gene (SLC6A2) expression may thus lead to altered central and peripheral processing of fear and anxiety. In silico prediction of microRNA regulation of SLC6A2 was confirmed by luciferase reporter assays and identified hsa-miR-579-3p as a regulating microRNA. The minor (T)-allele of rs2910931 (MAF(cases) = 0.431, MAF(controls) = 0.368) upstream of MIR579 was associated with panic disorder in patients (p(allelic) = 0.004, n(cases) = 506, n(controls) = 506) and with higher trait anxiety in healthy individuals (p(ASI) = 0.029, p(ACQ) = 0.047, n = 3112). Compared to the major (A)allele, increased promoter activity was observed in luciferase reporter assays in vitro suggesting more effective MIR579 expression and SLC6A2 repression in vivo (p = 0.041). Healthy individuals carrying at least one (T)-allele showed a brain activation pattern suggesting increased defensive responding and sympathetic noradrenergic activation in midbrain and limbic areas during the extinction of conditioned fear. Panic disorder patients carrying two (T)-alleles showed elevated heart rates in an anxiety-provoking behavioral avoidance test (F(2, 270) = 5.47, p = 0.005). Fine-tuning of noradrenaline homeostasis by a MIR579 genetic variation modulated central and peripheral sympathetic noradrenergic activation during fear processing and anxiety. This study opens new perspectives on the role of microRNAs in the etiopathogenesis of anxiety disorders, particularly their cardiovascular symptoms and comorbidities

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders
    corecore