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Abstract
Increased sympathetic noradrenergic signaling is crucially involved in fear and anxiety as defensive states. MicroRNAs
regulate dynamic gene expression during synaptic plasticity and genetic variation of microRNAs modulating
noradrenaline transporter gene (SLC6A2) expression may thus lead to altered central and peripheral processing of fear
and anxiety. In silico prediction of microRNA regulation of SLC6A2 was confirmed by luciferase reporter assays and
identified hsa-miR-579-3p as a regulating microRNA. The minor (T)-allele of rs2910931 (MAFcases= 0.431, MAFcontrols=
0.368) upstream of MIR579 was associated with panic disorder in patients (pallelic= 0.004, ncases= 506, ncontrols= 506)
and with higher trait anxiety in healthy individuals (pASI= 0.029, pACQ= 0.047, n= 3112). Compared to the major (A)-
allele, increased promoter activity was observed in luciferase reporter assays in vitro suggesting more effective MIR579
expression and SLC6A2 repression in vivo (p= 0.041). Healthy individuals carrying at least one (T)-allele showed a brain
activation pattern suggesting increased defensive responding and sympathetic noradrenergic activation in midbrain
and limbic areas during the extinction of conditioned fear. Panic disorder patients carrying two (T)-alleles showed
elevated heart rates in an anxiety-provoking behavioral avoidance test (F(2, 270)= 5.47, p= 0.005). Fine-tuning of
noradrenaline homeostasis by a MIR579 genetic variation modulated central and peripheral sympathetic noradrenergic
activation during fear processing and anxiety. This study opens new perspectives on the role of microRNAs in the
etiopathogenesis of anxiety disorders, particularly their cardiovascular symptoms and comorbidities.

Introduction
Anxiety disorders are a group of frequent mental dis-

orders starting early in life and resulting from complex
gene-by-environment interactions1,2. Among them, panic
disorder (PD) with agoraphobia (AG) is characterized by
marked heritability as well as disproportionate general-
ization of fear to stimuli and contexts not necessarily
predictive for actual danger3–5. Its clinical syndromes
such as panic attacks or anxious apprehension therefore
reflect defensive states equivalent to those elicited by
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actual danger as part of the defensive motivational system
as defined by Research Domain Criteria (RDoC)6.
The sympathetic noradrenergic system has repeatedly

been linked to fear, anxiety, and panic due to its activation
in defensive states7. Symptoms of autonomic arousal and
sympathetic noradrenergic activation such as tachycardia,
sweating/increased skin conductance, or trembling are
observed during acute threat as well as pathological states
of fear, including PD8,9. Likewise, symptoms of nora-
drenergic excess in pheochromocytoma or symptoms
elicited by alpha 2-adrenergic receptor antagonist chal-
lenge resemble symptoms of sympathetic noradrenergic
activation during panic attacks10,11 and reports on
increased noradrenaline levels during panic attacks may
explain these observations12.
Central noradrenergic signaling affects multiple pro-

cesses related to the development of anxiety disorders13.
Arousal, memory formation, consolidation, and retrieval
are involved in defensive responding and fear condition-
ing14. They have been linked to (pre-)motor cortex,
medial prefrontal cortex/anterior cingulate cortex, ante-
rior insula, amygdala, hippocampus, and thalamus func-
tion15–17. Fine-tuning of these neural systems of the
defensive motivational system by the noradrenergic sys-
tem may therefore represent an intermediate phenotype
of altered central noradrenergic signaling during fear
processing and sympathetic noradrenergic activation.
The noradrenaline transporter SLC6A2 mediates the

reuptake of noradrenaline into presynaptic nerve term-
inals and is therefore a crucial regulator of the nora-
drenergic system at the synaptic cleft18. However, studies
focusing on genetic variations spanning SLC6A2 failed to
show a robust and consistent association with trait anxiety
or PD so far19–22.
In order to bridge the gap between a high heritability

but low effect size of single genetic variations, emerging
attention has been paid to epigenetic regulation of genes
and gene networks23. One important, yet understudied
mechanism is posttranscriptional repression of gene
expression by microRNAs. MicroRNAs are small, non-
coding RNA molecules forming incomplete antisense
binding to multiple target mRNAs, counteracting
expression of multiple genes, and thereby regulating genes
on a genetic network level24,25. Previous studies have
demonstrated the role of microRNAs in synaptic plasti-
city, memory formation, fear conditioning, behavior as
well as mental disorders, including PD and related
traits26–32.
We hypothesized that genetic variants of microRNAs

regulating SLC6A2 leading to higher microRNA and
lower SLC6A2 expression contribute to pathological fear
processing in intermediate phenotypes of sympathetic
noradrenergic activation and defensive reactivity. For this
purpose, we (1) experimentally analyzed which

microRNAs regulated SLC6A2 expression, (2) studied
which single-nucleotide polymorphisms (SNPs) of
microRNA genes regulating SLC6A2 expression were
associated with PD and trait anxiety, (3) experimentally
analyzed whether the risk genotype modulated expression
of its microRNA and whether this microRNA regulated
other anxiety candidate genes, and (4) studied whether the
risk genotype modulated sympathetic noradrenergic
central fear processing and peripheral cardiovascular
parameters.

Materials and methods
Luciferase reporter and promoter activity assay
Repression of SLC6A2 expression by microRNAs was

analyzed in vitro as previously described32. In short,
pEZX-MT01 and -MT06 dual firefly/renilla luciferase
reporter vectors (GeneCopoeia, Rockville, USA) contain-
ing either the 3’-untranslated region (3'UTR) of human
SLC6A2 (HmiT017397-MT01), human GLRB
(HmiT007719-MT06), human NPY5R (HmiT011908-
MT06), and human HTR2B (HmiT009121-MT06) or no
3’UTR fused to the firefly luciferase (CmiT000001-MT01
or -MT06) were used. Three pmol of small RNA mole-
cules mimicking endogenous microRNAs (mirVana
microRNA mimics, Thermo Fisher Scientific, Waltham,
USA) were cotransfected along with 40 ng of pEZX-MT01
dual firefly/renilla luciferase reporter vectors containing
the 3’UTR of interest in HEK293 cells split into a 96-well
plate 4 h prior to transfection with a confluency of about
60%, using the Attractene Transfection Kit (Qiagen,
Venlo, Netherlands). Cells were tested for contamination
with mycoplasma on a regular basis. Post-transfection,
cells were incubated for 40–48 h and luciferase activity
was assessed using the LucPair Duo-Luciferase Assay Kit
(GeneCopoeia, Rockville, USA) and an EnVision 2104
Multilabel Reader (PerkinElmer, Waltham, MA). Assays
were repeated three times in technical triplicates for each
microRNA tested in each single experiment. Luciferase
activity suppression by each tested microRNA was nor-
malized as follows. (I) Luciferase activity was normalized
to the renilla activity of each well and than averaged in
technical triplicates (termed relative luciferase activity),
thereby normalizing for different transfection efficiencies
in different wells. (II) Relative luciferase activity of a
microRNA was normalized to the relative luciferase
activity of microRNA-untransfected control conditions
for the same vector (termed maximal luciferase activity),
thereby normalizing for unspecific effects on the cellular
level upon cotransfection of a microRNA. (III) Maximal
luciferase activity of each microRNA tested on a 3’UTR
vector of interest was normalized to the maximal luci-
ferase activity of the same microRNA on a control vector
containing no 3’UTR (termed normalized luciferase
activity), thereby normalizing for unspecific microRNA
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binding and effects at other parts of the vector sequence
than the 3’UTR of interest.
Regulation of promoter activity by risk genotype of

MIR579 rs2910931 was assessed as previously reported33.
In brief, single-stranded DNA oligonucleotides containing
the different alleles rs2910931 along with a −20/+20 bp
upstream/downstream flanking region were tested for
modulation of relative luciferase activity using pGL4.23 as
the firefly expressing reporter and pGL4.74 as the renilla
expressing control (Promega Corporation, Madison,
USA). Details of the primer design are given in supple-
mental methods.

Prediction and validation of microRNA binding at the
3’UTR of SLC6A2
Repression of SLC6A2 gene expression by microRNAs

was predicted in silico using TargetScanHuman 6.234,
DIANA microT-CDS35, and miRDB36. Predicted micro-
RNAs were validated by means of dual firefly/renilla
luciferase reporter assays considering previous results32

when showing either a score <−0.275 for TargetScan
(site-specific context score), >0.75 for Diana microT-CDS,
or >70 for mirDB. Of the 43 microRNAs tested (supple-
mental Table 2), 10 microRNAs showed a repression
of normalized luciferase activity to <85% and no
overlap of their 95% confidence interval (CI) with that of
negative control ath-miR-159a, highly suggesting a func-
tional relevance in vivo. These microRNAs were con-
sidered to be candidates for further genetic and functional
analysis.

Samples
Detailed descriptions of all samples have been pub-

lished9,16,33,37. Sample characteristics are summarized in
supplementary table 1. Briefly, unrelated German PD
patients (n= 506, mean age 35.2 ± 10.7 years, 70% female)
from the BMBF “Panic-Net” study wave 1 (diagnosis of
PD/AG 100%) and wave 2 (diagnosis of PD/AG 87%) were
recruited at multiple locations across Germany. Diagnosis
was established using the Composite International Diag-
nostic Interview according to Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV)
criteria38. For genetic association analyses, independent
controls (n= 506, mean age 30.5 ± 8.3, 70% female),
screened for absence of Axis I disorders by experienced
psychologists on the basis of the Mini International
Neuropsychiatric Interview according to the criteria of
DSM-IV39, were selected from the CRC-TRR-58 MEGA
study in order to achieve 1:1 matching for sex and age.
Genetic association analyses with dimensional anxiety
traits were performed using the Agoraphobic Cognitions
Questionnaire (ACQ)40 as well as Anxiety Sensitivity
Index (ASI)41 and the complete CRC-TRR-58 MEGA
study sample (n= 3112). Individuals with ASI or ACQ

scores deviating more than three standard deviations
(SDs) from the mean were excluded prior to analysis. For
the analysis of functional magnetic resonance imaging
(fMRI) in a healthy control sample, genotype information
was available in n= 40 of n= 60 participants. Further
details concerning this sample have been published42.
Data on genotype and the behavioral avoidance test
(BAT) were available in n= 276 patients PD/AG patients
of the BMBF “Panic-Net” study wave 1. Further details
concerning this sample have been published9.
All participant had given their written informed consent

according to the Helsinki guidelines in their updated
form. The CRC-TRR-58 MEGA study was approved by
the Ethics committee of the Medical Faculty of the Julius-
Maximilans-University Würzburg (EK 7/08). The BMBF
“PanicNet” RCT project was approved by the Ethics
Committees of the Medical Faculty of the Technische
Universität Dresden (EK 164082006) and the German
Psychological Society (AH11.2009) for wave I and II,
respectively. Neuroimaging was approved by the Ethics
Committee of the Medical Faculty of the Rheinisch-
Westfaelische Technische Hochschule University Aachen
(EK 073/07).

Genotyping
Genomic DNA of all attendees was extracted from

venous blood by a routine desalting method. Genotyping
of samples for SNPs of microRNA genes regulating
SLC6A2 expression was performed using competitive
allele-specific polymerase chain reaction (KASP; LGC
Group Ltd., Teddington, UK). All samples were subjected
to a stringent quality-control pipeline, accounting for call
rates >0.99, Hardy–Weinberg equilibrium (HWE) >0.1,
minor allele frequency (MAF) > 0.1, and principal com-
ponent analysis more than four-fold SD of the first three
principal components.

Analysis on the level of central and peripheral systems of
fear processing and anxiety
Acquisition of fMRI data in subjects completing a one-

session differential fear conditioning and extinction task
has been described previously42,43. Briefly, visually pre-
sented colored geometrical forms served as conditioned
stimulus (CS) during multi-trial familiarization (F),
acquisition (A), and extinction (E) phases of the task.
White noise adjusted to individual perception of aver-
siveness served as the unconditioned stimulus (US). The
US was pseudorandomly paired with one of the CS during
acquisition such that equal proportions of CS+paired and
CS+unpaired trials were obtained during acquisition.
Only CS+unpaired trials were used for further analyses
to avoid confounding between CS+ and US processing.
The acquisition and extinction phase were split into
halves to assess time-dependent processes. Of n= 60
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quality-controlled fMRI datasets, genetic information was
available for n= 40 subjects.
Acquisition of BAT data has been described previously9.

Briefly, PD/AG patients were asked to stay in a closed and
dark test chamber for approximately 10 min, thus indu-
cing agoraphobic anxiety and avoidance behavior. Auto-
nomic (heart rate) and subjective readouts (reported fear)
were collected prior, during, and after exposure. Active
avoidance (escaping the test chamber) was noted. Patients
without AG were excluded owing to the specificity of the
test to agoraphobic fear and avoidance. Furthermore,
patients with missing subjective and physiological data
due to complete avoidance of exposure to the test
chamber or technical equipment failures were excluded,
resulting in a final sample of 276 patients.
More details are given in supplemental methods.

Statistical analysis
Statistical analyses using Student’s t test were conducted

as implemented in Prism 6 (Graph-Pad, La Jolla, USA) or
SPSS 24 (IBM, Armonk, USA). Statistical analyses of
genotype data were performed using SPSS 24 applying
chi-square-tests for deviation from HWE as well as
case–control associations of allele or genotype counts and
linear regression as well as multivariate analysis of var-
iance (ANOVA) for gene dosage effects on ASI or ACQ.
We achieve a power of 63% to detect polymorphisms
conveying a relative risk of 1.5 to develop PD assuming a
MAF of 0.0544. Correction for n-multiple tests was con-
ducted using Sidák’s approach and corrected p values are
given as pc= 1− (1 – p)n. All tests were conducted two
sided.
Statistical analysis of fMRI data was conducted as

described previously16. On the group level, contrast ima-
ges for CS+unpaired and CS− of the first and second
halves of the acquisition and extinction phase were
entered into a flexible factorial design treating subjects as
random variables and the fMRI center as a covariate.
Contrasts of interest were the main effect of genotype
group during first and second halves of acquisition and
extinction, as well as the interaction effect of group × CS
(CS + unpaired vs. CS−) for each phase. In case of sig-
nificant F tests, t tests were used to localize the direction
of effects. Monte-Carlo simulation was adopted to
establish a voxel contiguity threshold to correct for mul-
tiple comparisons at the level of p < 0.05 (family-wise
error corrected (FWE))45. Assuming an individual voxel
type I error of p < 0.005, a cluster extent of 142 contiguous
resampled voxels allowed to correct for multiple voxel
comparisons at p < 0.05. As this cluster-based threshold
might not detect effects in smaller regions, region-of-
interest analyses were performed for the amygdala using
the automated anatomic labeling atlas to generate two
unilateral masks with small volume correction at p < 0.05

FWE-corrected, using a cluster-forming threshold of p <
0.001 uncorrected46. Beta values from significant clusters
were extracted and used for bar graph visualization.
Detailed information is provided in supplemental
methods.
In order to test avoidance behavior during the BAT, the

frequency of active avoidance as well as the duration of
tolerated exposure in active escapers were analyzed as a
function of genotype using chi-square tests and a model
of variance. The genotype effect on reported fear and
heart rate response was tested applying a mixed model of
variance including genotype and avoidance (active vs. no
avoidance) as a between-subject factor and BAT phase
(anticipation vs. exposure vs. recovery) as a within-subject
factor. All p values correspond to two-sided testing.

Results
Association analysis with PD and trait anxiety of SNPs of
microRNAs regulating SLC6A2 expression
TagSNPs with a MAF > 0.1 were determined for each of

the ten candidate microRNA genes identified by means of
luciferase reporter assays (Fig. 1) in a flanking region of
2000 bp upstream and 500 bp downstream47. No SNPs
were identified for MIR532, MIR664B, MIR3921, and
MIR4781. For the purpose of completeness, rs7194256
located in the 3’UTR of SLC6A2 was also included in
order to assess modulation of microRNA binding at the
3’UTR of SLC6A2. The linkage disequilibrium structure is
shown in supplementary figure 1 to 6. Genotyping of

Fig. 1 MicroRNA-mediated regulation of SLC6A2 expression. Data
show mean repression of normalized firefly luciferase activity upon
cotransfection of a dual luciferase reporter vector containing the
3’UTR of SLC6A2 with the microRNA as indicated and 95% confidence
intervals. Data were normalized to same-well renilla activity as well as
to the activity of a no 3’UTR-containing vector (n= 5 technical
triplicates). The 95% confidence intervals of all microRNAs shown were
outside the 95% confidence interval of the negative control microRNA
ath-miR-159a (95% CI [98.2, 109.7]) and thus considered to be
significantly regulating SLC6A2
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rs12151009 tagging MIR330 failed quality-control criteria
and was excluded. Seventeen SNPs were left for further
analyses.
Case–control association analysis with PD/AG and

MAFs for each SNP are given in Table 1. Genotype fre-
quencies of all SNPs resembled those of European refer-
ence samples (HapMap CEU and TSI) as well as the
1000Genomes project (MAF(T)= 0.3624), suggesting no
confounding by sample- or population-specific effects.
The minor (T)-allele of rs2910931 tagging MIR579 was
nominally associated with PD/AG (pallelic= 0.004), as was
the major (A)-allele of rs2582372 tagging MIR3662A
(pallelic= 0.023). Upon correction for multiple testing, the
allele count of rs2910931 still showed a trend toward
significance (pc= 0.069). Association of rs2910931 with
dimensional trait anxiety as analyzed by linear regression
adjusted for sex and age showed a significant association
between the number of minor (T)-alleles carried and ASI
(beta= 0.371, p= 0.029, 95% CI [0.039, 0.702]) as well as
ACQ scores (beta= 0.012, p= 0.041, 95% CI [0.000,
0.023]), in line with an additive genetic model. Multiway

ANOVA suggested no interaction with sex or dichot-
omized age.

Regulation of MIR579 promoter activity by rs2910931 and
anxiety candidate gene expression by hsa-miR-579-3p
Rs2910931 is located within the putative promoter

region 2 kB upstream of MIR579. Assessing promoter
activity in vitro by means of luciferase reporter assays
revealed a significantly higher relative luciferase activity
for the minor (T)-allele compared to the major (A)-allele
(Fig. 2a, p= 0.041). This result suggests a higher expres-
sion of MIR579 and hsa-miR-579-3p as well as decreased
expression of SLC6A2 in vivo.
Using TargetScan 6.2 and Diana microT-CDS, in silico

prediction yielded high scores for 3’UTR binding of hsa-
miR-579-3p for GLRB, HTR2B, and NPY5R, in line with
regulation of possible anxiety candidate genes33,48,49. A
significant repression of luciferase activity upon cotrans-
fection of hsa-miR-579-3p was observed for vectors con-
taining the 3’UTR of HTR2B and NPY5R (Fig. 2b).

Effects of rs2910931 on neural substrates of fear
conditioning and extinction in healthy controls
Neural activation during fear conditioning and extinc-

tion was assessed by means of fMRI42. Genetic informa-
tion was available in n= 40 of n= 60 participants. Owing
to the limited sample size, carriers of at least one minor
(T)-allele were considered to be at higher risk for anxiety-
related measures (n= 25), leaving (AA)-carriers in the
low-risk group (n= 15). Activation patterns were sig-
nificantly modulated by rs2910931 as summarized in
Table 2. A genotype main effect was observed in the late
extinction phase. Post hoc t tests showed that subjects
carrying at least one minor (T)-allele exhibited enhanced
neural activation in brain regions related to sympathetic
noradrenergic activation and fear processing such as the
midbrain/periaqueductal gray (PAG), amygdala, and hip-
pocampus, regardless of the CS presented. When carrying
no minor (T)-allele, a pronounced deactivation was noted
in these regions (Fig. 3a). Moreover, an interaction
between genotype and CS presented was observed during
the first half of the extinction phase. Minor (T)-allele
carriers showed enhanced neural activation of higher-
order cortical regions such as the supplementary motor
area (SMA) and the middle cingulate gyrus upon pre-
sentation of the CS+, while those not carrying any (T)-
allele showed enhanced neural activation upon presenta-
tion of the CS− (Fig. 3b).

Functional characterization of rs2910931 effects on fear
reactivity during the BAT in PD patients
To further corroborate the role of rs2910931 on sym-

pathetic noradrenergic activation, PD patients subjected
to the BAT provoking anxious apprehension were

Table 1 Genetic association analysis in a case–control
sample

SNP Gene MAF p(additive) p(allelic)

Cases Controls

rs1333953 MIR378G 0.356 0.353 0.887 0.896

rs1760512 MIR378G 0.395 0.400 0.478 0.832

rs10874892 MIR378G 0.239 0.237 0.836 0.901

rs11165236 MIR378G 0.221 0.240 0.492 0.299

rs4847356 MIR378G 0.233 0.231 0.490 0.902

rs2286755 MIR330 0.162 0.164 0.952 0.919

rs7252448 MIR330 0.253 0.253 0.443 0.981

rs12050652 MIR4715 0.422 0.463 0.111 0.065

rs2910931 MIR579 0.431 0.368 0.018* 0.004*

rs66683138 MIR3622A/B 0.252 0.226 0.330 0.175

rs522881 MIR3622A/B 0.441 0.423 0.517 0.420

rs554687 MIR3622A/B 0.430 0.438 0.440 0.701

rs2582372 MIR3622A/B 0.146 0.183 0.024* 0.023*

rs17384485 MIR3622A/B 0.361 0.348 0.616 0.531

rs10432476 MIR4773 0.453 0.452 0.566 0.995

rs1046668 MIR4773 0.173 0.163 0.829 0.550

rs7194256 SLC6A2 0.139 0.139 0.658 0.382

Single-nucleotide polymorphisms flanking genes as indicated were genotyped.
Association with the diagnosis of panic disorder was calculated for an additive
as well as an allelic genetic model. Nominally significant associations are
highlighted in bold letters. Upon correction for multiple testing, association of
rs2910931 with panic disorder (pc(allelic)= 0.069) remained at a trend toward
significance

Hommers et al. Translational Psychiatry           (2018) 8:226 Page 5 of 12



evaluated. Homozygotic carriers of (T)-alleles showed a
significantly higher heart rate increase from the last
minute of the anticipation to the first minute of the
exposure phase (Fig. 4; F(2, 270)= 5.47, p= 0.005), irre-
spective of active avoidance behavior (genotype × beha-
vior F(2, 270)= 0.32, p= 0.73). For AA-carriers, the heart
rate increased from 76.70 ± 1.21 min−1 prior to exposure
to 80.37 ± 1.63 min−1 upon exposure. AT-carriers showed
an increase from 75.87 ± 0.99 to 78.15 ± 1.32 min−1 and
TT-carriers from 74.10 ± 1.27 to 82.09 ± 2.01 min−1.
During the anticipation and recovery phase, heart rates
did not differ between genotype and avoidance groups.
Overall active avoidance was significantly associated with
higher heart rate reactivity (F(1, 270)= 30.01, p < 0.001),
in line with previous findings.

Discussion
Regulation of gene expression by microRNAs is an

important mechanism in neuronal plasticity. Indeed, the
role of microRNAs in mental disorders has become an
emerging field of research29,30. MicroRNAs act on gene
networks, making candidate gene-based evaluation of
microRNAs a promising approach to identify network
regulators of high pathogenic relevance. MicroRNA reg-
ulation of SLC6A2 expression was probed for several
reasons. SLC6A2 is a main regulator of noradrenaline
homeostasis by rapidly removing it from the synaptic cleft
and the noradrenergic system has been linked with
mechanisms of defensive states involved in fear proces-
sing and general arousal.

Here we present evidence for the impact of genetic
variation of microRNA regulation of SLC6A2 on the
RDoC defensive motivational system in fear and anxiety.
Our results suggest that (I) the minor (T)-allele of
rs2910931 upstream of MIR579 leads to increased
expression of hsa-miR-579-3p and more effective
repression of SLC6A2 expression along with higher
synaptic noradrenaline levels in vivo resulting in (II)
higher trait anxiety in healthy individuals possibly due to
increased activation of midbrain and limbic areas during
fear processing and (III) association with PD mediated by
increased sympathetic noradrenergic arousal when
entering contexts of potential threat.
Our data suggest that dysbalancing fine-tuning of

synaptic noradrenaline homeostasis interferes with suc-
cessfully establishing fear-inhibitory memory traces and
top–down inhibition of defensive responses mediated by
brain areas (midbrain/PAG, amygdala) related to sympa-
thetic noradrenergic activation during safety learn-
ing17,50,51. Moreover, higher-risk (T)-allele carriers
showed enhanced recall of the conditioned fear memory
during the first half of extinction training as indicated by
stronger activation of brain areas like the SMA, com-
monly associated with fear expression15. Taken together,
both processes result in pathological arousal and may
ultimately contribute to anxiety disorders, sharing
increased sympathetic noradrenergic signaling as a com-
mon mechanism. This hypothesis was corroborated for
PD patients by showing increased sympathetic nora-
drenergic arousal when undergoing the BAT.

Fig. 2 Dual luciferase reporter assay for modulation of MIR579 expression by upstream genetic variation and hsa-miR-579-3p-mediated
regulation of anxiety candidate gene expression. a Data show mean relative firefly luciferase activity under a minimal promoter sequence
containing the (A)- and (T)-allele of rs2910931 upstream of MIR579 as indicated. Data were normalized to same-well renilla activity and are shown as
mean and standard error (n= 7 technical triplicates, *p < 0.05 using a two-sided t test). b Data show mean repression of normalized firefly luciferase
upon cotransfection with hsa-miR-579-3p and ath-miR159a (negative control) as indicated. Dual luciferase reporter assays contained the 3’UTR of the
corresponding receptor genes as indicated. Data were normalized to negative-control-3’UTR relative firefly activity for each microRNA as indicated (n
= 5 technical triplicates, *p < 0.05, ***p < 0.005)
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Table 2 Genetic imaging analysis of rs2910931

Contrast/region Side Voxels x y z F or t pa

Main group effects

Acquisition first phase No differential activation

Acquisition second phase

Inferior occipital lobe L 156 −12 −96 −10 17.12 <0.001

Post hoc t tests

Acquisition second phase: risk>no risk No differential activation

Acquisition second phase: no risk>risk

Inferior occipital lobe L 225 −12 −96 −10 4.14 <0.001

Extinction first phase No differential activation

Extinction second phase

Midbrain (incl. right hippocampus) 550 0 −24 −16 16.85 <0.001

Inferior parietal lobe L 159 −54 −42 54 9.62 0.002

Hippocampus (2 mm dev.) L 355 30 −4 −18 12.33 0.001

Amygdalab L 16 −30 −2 −20 12.04 0.013

Post hoc t tests

Extinction second phase: risk>no risk

Midbrain (incl. right hippocampus) 1018 0 −24 −16 4.11 <0.001

Inferior parietal lobe L 272 −54 −42 54 3.10 0.001

Hippocampus (2 mm dev.) L 737 30 −4 −18 3.51 <0.001

Amygdalab L 36 −30 −2 −20 3.47 0.007

Lingual gyrus L 196 −4 −78 −4 3.15 0.001

Extinction second phase: no risk>risk No differential activation

Group × CS interaction effects

Acquisition first phase

Inferior frontal gyrus pars triangularis L 235 −44 28 26 13.11 <0.001

Post hoc t tests

Acquisition first phase: risk>no risk (CS + unpaired > CS−) No differential activation

Acquisition first phase: no risk>risk (CS + unpaired > CS−)

Inferior frontal gyrus pars triangularis L 429 −44 28 26 3.62 <0.001

Acquisition second phase

Caudate nucleus L 378 −8 14 12 13.17 <0.001

Middle temporal gyrus (4.47 mm dev.) R 192 36 −60 4 12.50 <0.001

Post hoc t tests

Acquisition second phase: risk>no risk (CS + unpaired > CS−)

Caudate nucleus L 564 −8 14 12 4.31 <0.001

Middle temporal gyrus (4.47 mm dev.) R 348 36 −60 4 3.55 <0.001

Acquisition second phase: no risk > risk (CS + unpaired > CS−) No differential activation

Extinction first phase

Supplementary motor area L 735 −2 22 60 22.76 <0.001
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Table 2 continued

Contrast/region Side Voxels x y z F or t pa

Caudate nucleus (4.90 mm dev.) R 219 20 12 28 12.92 <0.001

Middle frontal gyrus (3.46 mm dev.) L 218 −26 16 32 12.65 <0.001

Post hoc t tests

Extinction first phase: risk>no risk (CS +> CS−)

Supplementary motor area L 1599 −2 22 60 4.77 <0.001

Middle cingulate gyrus L 543 −4 −14 42 3.30 0.001

Caudate nucleus (4.90 mm dev.) R 432 20 12 28 3.59 <0.001

Extinction first phase: no-risk > risk (CS +> CS−) No differential activation

Extinction second phase No differential activation

Main genotype effect of rs2910931 and genotype × CS interaction effects on brain activation patterns during fear acquisition and extinction are given as cluster peak
voxels. Risk group status was defined as carrying at least one minor (T)-allele. During the acquisition, only CS+ trials that were not paired with the US were used for
analyses
L left, R right, voxel number of voxels per cluster, x, y, z MNI coordinates, dev deviation (in mm) from the identified anatomical structure using anatomic automatic
labeling (aal). CS+ conditioned stimulus followed by the unconditioned stimulus (US) in 50% of trials during acquisition, CS− conditioned stimulus never followed by
the US
aUncorrected p values of whole-brain results with a minimum cluster size of 142 contiguous voxels are given, indicating p < 0.05 upon correction for multiple
comparisons
bSmall volume correction using aal masks (FWE correction at p < 0.05) with a cluster forming threshold of p < 0.001 was applied

Fig. 3 Neurofunctional activation patterns of fear-related brain structures in healthy controls during fear conditioning and extinction.
Healthy controls (n= 40) were subjected to an experimental fear conditioning and extinction task. Activation of brain regions was analyzed by means
of fMRI as a function of minor (T)-alleles of rs2910931 (TT+AT: n= 25; AA: n= 15). Beta values from significant clusters were extracted and used for
bar graph visualization (a.u.). a Activation of midbrain/periaqueductal gray, amygdala, and hippocampus regardless of conditioned stimulus
presented during the second half of the extinction phase as a function of rs2910931 genotype group. b Interaction of rs2910931 genotype group
with the conditioned stimulus presented during the first half of the extinction phase. *p < 0.05, **p < 0.01, and ***p < 0.001. CS+ conditioned
stimulus that was followed by the unconditioned stimulus (US); CS− conditioned stimulus that was never followed by the US
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Homozygous (T)-allele carriers showed a significantly
higher heart rate increase upon agoraphobic fear-
provoking exposure to the test chamber. This result is
in accordance with a pronounced noradrenaline-mediated
autonomic fear response, as supported by previous
studies10,11,13.
Several limitations apply to our study. While circulating

levels of hsa-miR-579 were related to bevacizumab-
induced cardiotoxicity52, expression of MIR579 has not
yet been described in the human brain53 and no neuronal
function has been defined so far. Expression quantitative
trait loci have been reported for rs2910931 in skin and
thyroid tissue (data obtained from the GTEx portal on 24
July 2018), but not for brain tissue or forMIR57954 as well
as no corresponding functional annotation55. However,
expression in tissues subject to noradrenergic regulation
such as the adrenal gland was reported as well as a high
probability of transcription start site modulation in the
heart of the region flanking MIR579, thereby further
linking MIR579 to noradrenergic signaling55. MIR579 is
intronic in the zink finger RNA-binding protein ZFR and
polyadenylation was suggested to modulate a negative
feedback loop between both56, possibly also relevant at
the synapse. We provide additional evidence for a reg-
ulatory role of hsa-miR-579-3p at the noradrenergic as
well as the serotonergic synapse, by showing regulation of
the neuropeptide Y receptor 5 (NPYR5) with neuropep-
tide Y being a co-transmitter of noradrenaline, and the
serotonin receptor 2B (5HTR2B). Our data thus give a
first glimpse into molecular mechanisms by which
MIR579 may act on endophenotypes as well as clinical
phenotypes of fear and anxiety, e.g., by regulating not only

SLC6A2 but also other genes involved in fear and anxiety.
Future studies adopting next-generation sequencing may
give more detailed insight into the relevance of genetic
variations at MIR579 and its flanking region as well as the
gene network regulated by it. They may also address the
exact mechanisms of hsa-miR-579-3p binding at the
mRNA in more detail by using binding-site-directed
nucleotide mutagenesis, thereby additionally allowing to
assess the role of rare genetic variants at these nucleo-
tides. Conservation of MIR579 has only been confirmed
among Homo sapiens, Pan troglodytes, Pongo pygmaeus,
and Macaca mulatta and its seed sequence in SLC6A2 is
only incompletely conserved in more distantly related
species, such as mice or rat. Validation of MIR579 func-
tions in mice or rats is therefore not possible. Studies
applying cross-linked immunoprecipitation and next-
generation sequencing as well as lentivirus-mediated
gene overexpression and silencing will allow to identify
the gene network regulated by MIR579. Further studies
may specifically assess the functional role of rs2910931 by
simultaneous quantification of MIR579 and target gene as
well as protein expression levels in postmortem brain
tissue, neuronal stem cells, or human heterologous
expression systems. Although genetic association of
rs2910931 with the categorical phenotype PD kept a trend
toward significance upon correction for multiple testing
and was supported by the association with dimensional
anxiety traits, these results need to be considered
exploratory. Limited power of the sample in light of the
small effect sizes of single genetic variations may account
for this, making replication of study results in larger
samples a prerequisite to draw final conclusions. Never-
theless, the consistent association with functional central
and peripheral endophenotypes of defensive states such as
fear conditioning and extinction as well as heart rate
support a role in the pathophysiology of fear and anxiety.
Our observations complement a recent report that

rs7194256 within the 3’UTR of SLC6A2 regulating bind-
ing of hsa-miR-19a-3p was associated with elevated
anxiety measures, arterial noradrenaline levels, depression
scores, larger left ventricular mass index, heart rate, as
well as higher systolic and diastolic blood pressure levels
in healthy controls and patients with affective (depression
and PD) and cardiovascular disease57. While we failed to
observe an association of rs7194256 with trait anxiety or
PD, our results share the same direction of effects con-
cerning PD, trait anxiety, and sympathetic noradrenergic
endophenotypes for rs2910931 and hsa-miR-579-3p.
They add to the observations of Marques and co-
workers57 by providing evidence for parallel effects of
microRNA regulation of SLC6A2 on central and periph-
eral sympathetic noradrenergic endophenotypes.
In conclusion, microRNA regulation of SLC6A2 may

contribute to the pathophysiology of fear and anxiety not

Fig. 4 Increase of heart rate in PD patients during the behavioral
avoidance test. Patients with panic disorder and agoraphobia (n=
276: n(AA)= 95, n(AT)= 129, n(TT)= 52) were subjected to
experimental panic exposition using the behavioral avoidance test.
Data show the mean difference with standard error of heart rates
between the last minute of the anticipation phase and the first minute
of the exposure phase during the behavioral avoidance test as a
function of rs2910931 genotype. *p < 0.05
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necessarily by increased basic pathological anxiety but
rather by modulating reactions of fear and flight. These
reactions are related to increased sympathetic nora-
drenergic activation, which may represent the common
link between anxiety disorders and their cardiovascular
symptoms as well as comorbid cardiovascular disease57–
61. Future studies addressing mechanisms of hsa-miR-
579-3p action and its role in clinical cohorts of anxiety
and cardiovascular disorders including therapy studies
have to further corroborate these hypotheses. As such,
studies on microRNAs open up new perspectives on
common mechanisms of comorbid disorders and novel
therapeutic approaches.
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