104 research outputs found

    Impact of resonance decays on critical point signals in net-proton fluctuations

    Full text link
    The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays on critical fluctuations. We show that resonance effects reduce the signatures of critical fluctuations, but that for reasonable parameter choices critical effects in the net-proton cumulants survive. The relative role of resonance decays has a weak dependence on the order of the cumulants studied with a slightly stronger suppression of critical effects for higher-order cumulants

    Gas-liquid transition in the model of particles interacting at high energy

    Full text link
    An application of the ideas of the inertial confinement fusion process in the case of particles interacting at high energy is investigated. A possibility of the gas-liquid transition in the gas is considered using different approaches. In particular, a shock wave description of interactions between particles is studied and a self-similar solution of Euler's equation is discussed. Additionally, Boltzmann equation is solved for self-consistent field (Vlasov's equation) in linear approximation for the case of a gas under external pressure and the corresponding change of Knudsen number of the system is calculated.Comment: 24 pages, 2 figur

    Langevin Simulation of Scalar Fields: Additive and Multiplicative Noises and Lattice Renormalization

    Full text link
    We consider the Langevin lattice dynamics for a spontaneously broken lambda phi^4 scalar field theory where both additive and multiplicative noise terms are incorporated. The lattice renormalization for the corresponding stochastic Ginzburg-Landau-Langevin and the subtleties related to the multiplicative noise are investigated.Comment: 26 pages, 4 eps figures (Elsevier latex style

    Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    Get PDF
    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photo-production in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7th Framework Programme

    Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

    Get PDF
    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma

    Enhancing Perceived Safety in Human–Robot Collaborative Construction Using Immersive Virtual Environments

    Full text link
    Advances in robotics now permit humans to work collaboratively with robots. However, humans often feel unsafe working alongside robots. Our knowledge of how to help humans overcome this issue is limited by two challenges. One, it is difficult, expensive and time-consuming to prototype robots and set up various work situations needed to conduct studies in this area. Two, we lack strong theoretical models to predict and explain perceived safety and its influence on human–robot work collaboration (HRWC). To address these issues, we introduce the Robot Acceptance Safety Model (RASM) and employ immersive virtual environments (IVEs) to examine perceived safety of working on tasks alongside a robot. Results from a between-subjects experiment done in an IVE show that separation of work areas between robots and humans increases perceived safety by promoting team identification and trust in the robot. In addition, the more participants felt it was safe to work with the robot, the more willing they were to work alongside the robot in the future.University of Michigan Mcubed Grant: Virtual Prototyping of Human-Robot Collaboration in Unstructured Construction EnvironmentsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145620/1/You et al. forthcoming in AutCon.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145620/4/You et al. 2018.pdfDescription of You et al. 2018.pdf : Published Versio

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Gender specific reproductive strategies of an arctic key species (Boreogadus saida) and implications of climate change

    Get PDF
    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain
    corecore