74 research outputs found
Constructing the crust along the Galapagos Spreading Center 91.3°â95.5°W : correlation of seismic layer 2A with axial magma lens and topographic characteristics
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B10310, doi:10.1029/2004JB003066.Multichannel seismic reflection data are used to infer crustal accretion processes along the intermediate spreading Galapagos Spreading Center. East of 92.5°W, we image a magma lens beneath the ridge axis that is relatively shallow (1.0â2.5 km below the seafloor) and narrow (âŒ0.5â1.5 km, cross-axis width). We also image a thin seismic layer 2A (0.24â0.42 km) that thickens away from the ridge axis by as much as 150%. West of 92.7°W, the magma lens is deeper (2.5â4.5 km) and wider (0.7â2.4 km), and layer 2A is thicker (0.36â0.66 km) and thickens off axis by <40%. The positive correlation between layer 2A thickness and magma lens depth supports the interpretation of layer 2A as the extrusive volcanic layer with thickness controlled by the pressure on the magma lens and its ability to push magma to the surface. Our findings also suggest that narrower magma lenses focus diking close the ridge axis such that lava flowing away from the ridge axis will blanket older flows and thicken the extrusive crust off axis. Flow of lava away from the ridge axis is probably promoted by the slope of the axial bathymetric high, which is largest east of 92.5°W. West of âŒ94°W the âtransitionalâ axial morphology lacks a prominent bathymetric high and layer 2A no longer thickens off axis. We detect no magma lens west of 94.7°W where a small axial valley appears. The above changes can be linked to the westward decrease in the magma and heat flux associated with the fading influence of the Galapagos hot spot on the Galapagos Spreading Center.This project was funded by NSF-OCE-
0002189
Expedition 390 Preliminary Report. South Atlantic Transect 1
The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling project that comprises four International Ocean Discovery Program (IODP) expeditions: engineering Expeditions 390C and 395E as well as Expeditions 390 and 393. Altogether, the expeditions aim to recover complete sedimentary sections and the upper 100â350 m of the underlying oceanic crust along a slow/intermediate spreading rate Mid-Atlantic Ridge crustal flow line at ~31°S. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 (December 1968âJanuary 1969) to help verify the theories of seafloor spreading and plate tectonics. Given dramatic advances in drilling technology and analytical capabilities since Leg 3, many high-priority scientific objectives can be addressed by revisiting the transect. The SAT expeditions target six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust, which fill critical gaps in our sampling of intact in situ ocean crust with regards to crustal age, spreading rate, and sediment thickness. Drilling these sites is required to investigate the history of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean and quantify past hydrothermal contributions to global biogeochemical cycles. Samples from the transect of the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre are essential to refining global biomass estimates and examining microbial ecosystemsâ responses to variable conditions in a low-energy gyre and aging ocean crust. The transect is located near World Ocean Circulation Experiment Line A10, providing access to records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification.
Engineering Expeditions 390C and 395E cored a single hole through the sediment/basement interface with the advanced piston corer/extended core barrel system at five of the six primary proposed SAT sites and installed a reentry system with casing either into basement or within 10 m of basement at each of those five sites. Expedition 390 (7 Aprilâ7 June 2022) conducted operations at three of the SAT sites, recovering 700 m of core (77% recovery) over 30.3 days of on-site operations. Sediment coring, basement drilling, and logging were conducted at two sites on 61 Ma crust, and sediment coring was completed at the 7 Ma crust site. At Site U1557 on 61 Ma crust, the drill bit was deposited on the seafloor prior to downhole logging, leaving Hole U1557D available for future deepening and to establish a legacy borehole for basement hydrothermal and microbiological experiments. Expedition 390 scientists additionally described, and analyzed data from, 792 m of core collected during Expeditions 390C and 395E. Expedition 393 plans to operate at four sites, conducting basement drilling and downhole logging at the 7 Ma site, in addition to sediment coring, basement drilling, and logging at the sites intermediate in age
Imaging crustal structure in South-Central Costa Rica with Receiver Functions
An array of broadband seismometers transecting the Talamanca Range in southern Costa Rica was operated from 2005 until 2007. In combination with data from a shortâperiod network near Quepos in central Costa Rica, this data is analyzed by the receiver function method to image the crustal structure in southâcentral Costa Rica. Two strong positive signals are seen in the migrated images, interpreted as the Moho (at around 35 km depth) and an intraâcrustal discontinuity (15 km depth). A relatively flat crustal and Moho interface underneath the northâeast flank of the Talamanca Range can be followed for a lateral
distance of about 50 km parallel to the trench, with only slight changes in the overall geometry. Closer to the coast, the topography of the discontinuities shows several features, most notably a deeper Moho underneath the Talamanca Mountain Range and volcanic arc. Under the highest part of the mountain ranges, the Moho reaches a depth of about 50 km, which indicates that the mountain ranges are approximately isostatically compensated. Local deviations from the crustal thickness expected for isostatic equilibrium occur under the active volcanic arc and in south Costa Rica. In the transition region between the active volcanic arc and the Talamanca Range, both the Moho and intracrustal discontinuity appear distorted,
possibly related to the southern edge of the active volcanic zone and deformation within the southern part
of the Central Costa Rica Deformed Belt. Near the volcanoes Irazu and Turrialba, a shallow converter occurs, correlating with a lowâvelocity, lowâdensity body seen in tomography and gravimetry. Applying a grid search for the crustal interface depth and vp/vs ratio cannot constrain vp/vs values well, but points to generally low values (<1.7) in the upper crust. This is consistent with quartzârich rocks forming the mountain range
Drilling-induced and logging-related features illustrated from IODP-ICDP Expedition 364 downhole logs and borehole imaging tools
Expedition 364 was a joint IODP and ICDP mission-specific platform (MSP) expedition to explore the Chicxulub impact crater buried below the surface of the YucatĂĄn continental shelf seafloor. In April and May 2016, this expedition drilled a single borehole at Site M0077 into the crater's peak ring. Excellent quality cores were recovered from ~ 505 to ~1335m below seafloor (m b.s.f.), and high-resolution open hole logs were acquired between the surface and total drill depth. Downhole logs are used to image the borehole wall, measure the physical properties of rocks that surround the borehole, and assess borehole quality during drilling and coring operations. When making geological interpretations of downhole logs, it is essential to be able to distinguish between features that are geological and those that are operation-related. During Expedition 364 some drilling-induced and logging-related features were observed and include the following: effects caused by the presence of casing and metal debris in the hole, logging-tool eccentering, drilling-induced corkscrew shape of the hole, possible re-magnetization of low-coercivity grains within sedimentary rocks, markings on the borehole wall, and drilling-induced changes in the borehole diameter and trajectory
Early paleocene paleoceanography and export productivity in the Chicxulub crater
The Chicxulub impact caused a crash in productivity in the world''s oceans which contributed to the extinction of ~75% of marine species. In the immediate aftermath of the extinction, export productivity was locally highly variable, with some sites, including the Chicxulub crater, recording elevated export production. The long-term transition back to more stable export productivity regimes has been poorly documented. Here, we present elemental abundances, foraminifer and calcareous nannoplankton assemblage counts, total organic carbon, and bulk carbonate carbon isotope data from the Chicxulub crater to reconstruct changes in export productivity during the first 3 Myr of the Paleocene. We show that export production was elevated for the first 320 kyr of the Paleocene, declined from 320 kyr to 1.2 Myr, and then remained low thereafter. A key interval in this long decline occurred 900 kyr to 1.2 Myr post impact, as calcareous nannoplankton assemblages began to diversify. This interval is associated with fluctuations in water column stratification and terrigenous flux, but these variables are uncorrelated to export productivity. Instead, we postulate that the turnover in the phytoplankton community from a post-extinction assemblage dominated by picoplankton (which promoted nutrient recycling in the euphotic zone) to a Paleocene pelagic community dominated by relatively larger primary producers like calcareous nannoplankton (which more efficiently removed nutrients from surface waters, leading to oligotrophy) is responsible for the decline in export production in the southern Gulf of Mexico. © 2021. American Geophysical Union. All Rights Reserved
Geochemistry of lavas from the 2005â2006 eruption at the East Pacific Rise, 9°46âČNâ9°56âČN : implications for ridge crest plumbing and decadal changes in magma chamber compositions
Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q05T09, doi:10.1029/2009GC002977.Detailed mapping, sampling, and geochemical analyses of lava flows erupted from an âŒ18 km long section of the northern East Pacific Rise (EPR) from 9°46âČN to 9°56âČN during 2005â2006 provide unique data pertaining to the short-term thermochemical changes in a mid-ocean ridge magmatic system. The 2005â2006 lavas are typical normal mid-oceanic ridge basalt with strongly depleted incompatible trace element patterns with marked negative Sr and Eu/Eu* anomalies and are slightly more evolved than lavas erupted in 1991â1992 at the same location on the EPR. Spatial geochemical differences show that lavas from the northern and southern limits of the 2005â2006 eruption are more evolved than those erupted in the central portion of the fissure system. Similar spatial patterns observed in 1991â1992 lavas suggest geochemical gradients are preserved over decadal time scales. Products of northern axial and off-axis fissure eruptions are consistent with the eruption of cooler, more fractionated lavas that also record a parental melt component not observed in the main suite of 2005â2006 lavas. Radiogenic isotopic ratios for 2005â2006 lavas fall within larger isotopic fields defined for young axial lavas from 9°N to 10°N EPR, including those from the 1991â1992 eruption. Geochemical data from the 2005â2006 eruption are consistent with an invariable mantle source over the spatial extent of the eruption and petrogenetic processes (e.g., fractional crystallization and magma mixing) operating within the crystal mush zone and axial magma chamber (AMC) before and during the 13 year repose period. Geochemical modeling suggests that the 2005â2006 lavas represent differentiated residual liquids from the 1991â1992 eruption that were modified by melts added from deeper within the crust and that the eruption was not initiated by the injection of hotter, more primitive basalt directly into the AMC. Rather, the eruption was driven by AMC pressurization from persistent or episodic addition of more evolved magma from the crystal mush zone into the overlying subridge AMC during the period between the two eruptions. Heat balance calculations of a hydrothermally cooled AMC support this model and show that continual addition of melt from the mush zone was required to maintain a sizable AMC over this time interval.This work has been supported by
NSF grants OCEâ0525863 and OCEâ0732366 (D. J. Fornari
and S. A. Soule), OCEâ0636469 (K. H. Rubin), and OCEâ
0138088 (M. R. Perfit), as well as postdoctoral fellowship funds
from the University of Florida
Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles
Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60â100âkm depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120â160âkm depth suggests that the slabâs mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics
A steeply-inclined trajectory for the Chicxulub impact
The environmental severity of large impacts on Earth is influenced by their impact trajectory. Impact direction and angle to the target plane affect the volume and depth of origin of vaporized target, as well as the trajectories of ejected material. The asteroid impact that formed the 66 Ma Chicxulub crater had a profound and catastrophic effect on Earthâs environment, but the impact trajectory is debated. Here we show that impact angle and direction can be diagnosed by asymmetries in the subsurface structure of the Chicxulub crater. Comparison of 3D numerical simulations of Chicxulub-scale impacts with geophysical observations suggests that the Chicxulub crater was formed by a steeply-inclined (45â60° to horizontal) impact from the northeast; several lines of evidence rule out a low angle (<30°) impact. A steeply-inclined impact produces a nearly symmetric distribution of ejected rock and releases more climate-changing gases per impactor mass than either a very shallow or near-vertical impact
- âŠ