10 research outputs found

    Obesity and brain structure in schizophrenia - ENIGMA study in 3021 individuals

    Get PDF
    Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia

    Staging of Schizophrenia with the Use of PANSS: An International Multi-Center Study

    Get PDF
    Introduction: A specific clinically relevant staging model for schizophrenia has not yet been developed. The aim of the current study was to evaluate the factor structure of the PANSS and develop such a staging method.Methods: Twenty-nine centers from 25 countries contributed 2358 patients aged 37.21 ± 11.87 years with schizophrenia. Analysis of covariance, Exploratory Factor Analysis, Discriminant Function Analysis, and inspection of resultant plots were performed.Results: Exploratory Factor Analysis returned 5 factors explaining 59% of the variance (positive, negative, excitement/hostility, depression/anxiety, and neurocognition). The staging model included 4 main stages with substages that were predominantly characterized by a single domain of symptoms (stage 1: positive; stages 2a and 2b: excitement/hostility; stage 3a and 3b: depression/anxiety; stage 4a and 4b: neurocognition). There were no differences between sexes. The Discriminant Function Analysis developed an algorithm that correctly classified >85% of patients.Discussion: This study elaborates a 5-factor solution and a clinical staging method for patients with schizophrenia. It is the largest study to address these issues among patients who are more likely to remain affiliated with mental health services for prolonged periods of time.<br /

    Obesity and brain structure in schizophrenia - ENIGMA study in 3021 individuals

    No full text
    Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia.FUNDING: NAC et al. were supported by the Agencia Nacional de Investigación y Desarrollo, Chile, through its grants PIA ACT1414, ANID-PIA-ACT 192064, and FONDECYT regular 1200601. This work was funded by the German Research Foundation (DFG, grant FOR2107 DA1151/5-1 and DA1151/5-2 to UD; SFB-TRR58, Projects C09 and Z02 to UD) and the Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (grant Dan3/012/17 to UD). The NUDZ and IKEM sites were supported by funding from the Ministry of Health of the Czech Republic (16-32791A, NU20-04-00393) and conceptual development of research organization (Institute for Clinical and Experimental Medicine – IKEM, IN 00023001). This work was also funded by the German Research Foundation (DFG grant FOR2107, KI588/14-1 and FOR2107, KI588/14-2 to TTJK, Marburg, Germany), as well as, the Alexander von Humboldt Foundation, EU and Deutsche Forschungsgemeinschaft (DFG), grants NE2254/1-2, NE2254/3-1, NE2254/4-1. Additional support provided by research grants from the National Healthcare Group, Singapore (SIG/05004; SIG/05028), and the Singapore Bioimaging Consortium (RP C009/ 2006) research grants awarded to KS. EW was supported by the European Union’s Horizon 2020 research and innovation programme (Early Cause, grant n° 848158). Funding for TWW was provided by the National Health and Medical Research Council Australia Project Grant 568807; New South Wales Health, University of New South Wales, Neuroscience Research Australia and the Schizophrenia Research Institute. GD’s research was funded by the European Research Council 677467 and Science Foundation Ireland 16/ERCS/3787. VDC was supported by NIH R01MH118695. PMT was supported by NIMH grant R01MH116147. Lastly, TH was supported by funding from the Canadian Institutes of Health Research (103703, 106469 and 142255), Nova Scotia Health Research Foundation, Dalhousie Clinical Research Scholarship to TH, Brain & Behavior Research Foundation (formerly NARSAD); 2007 Young Investigator and 2015 Independent Investigator Awards to T

    Gender, age at onset, and duration of being ill as predictors for the long-term course and outcome of schizophrenia : an international multicenter study

    No full text
    Background The aim of the current study was to explore the effect of gender, age at onset, and duration on the long-term course of schizophrenia. Methods Twenty-nine centers from 25 countries representing all continents participated in the study that included 2358 patients aged 37.21 +/- 11.87 years with a DSM-IV or DSM-5 diagnosis of schizophrenia; the Positive and Negative Syndrome Scale as well as relevant clinicodemographic data were gathered. Analysis of variance and analysis of covariance were used, and the methodology corrected for the presence of potentially confounding effects. Results There was a 3-year later age at onset for females (P &lt; .001) and lower rates of negative symptoms (P &lt; .01) and higher depression/anxiety measures (P &lt; .05) at some stages. The age at onset manifested a distribution with a single peak for both genders with a tendency of patients with younger onset having slower advancement through illness stages (P = .001). No significant effects were found concerning duration of illness. Discussion Our results confirmed a later onset and a possibly more benign course and outcome in females. Age at onset manifested a single peak in both genders, and surprisingly, earlier onset was related to a slower progression of the illness. No effect of duration has been detected. These results are partially in accord with the literature, but they also differ as a consequence of the different starting point of our methodology (a novel staging model), which in our opinion precluded the impact of confounding effects. Future research should focus on the therapeutic policy and implications of these results in more representative samples

    Modeling psychological function in patients with schizophrenia with the PANSS: an international multi-center study.

    No full text
    BACKGROUND.: The aim of the current study was to explore the changing interrelationships among clinical variables through the stages of schizophrenia in order to assemble a comprehensive and meaningful disease model. METHODS.: Twenty-nine centers from 25 countries participated and included 2358 patients aged 37.21 ± 11.87 years with schizophrenia. Multiple linear regression analysis and visual inspection of plots were performed. RESULTS.: The results suggest that with progression stages, there are changing correlations among Positive and Negative Syndrome Scale factors at each stage and each factor correlates with all the others in that particular stage, in which this factor is dominant. This internal structure further supports the validity of an already proposed four stages model, with positive symptoms dominating the first stage, excitement/hostility the second, depression the third, and neurocognitive decline the last stage. CONCLUSIONS.: The current study investigated the mental organization and functioning in patients with schizophrenia in relation to different stages of illness progression. It revealed two distinct "cores" of schizophrenia, the "Positive" and the "Negative," while neurocognitive decline escalates during the later stages. Future research should focus on the therapeutic implications of such a model. Stopping the progress of the illness could demand to stop the succession of stages. This could be achieved not only by both halting the triggering effect of positive and negative symptoms, but also by stopping the sensitization effect on the neural pathways responsible for the development of hostility, excitement, anxiety, and depression as well as the deleterious effect on neural networks responsible for neurocognition.status: Published onlin

    Staging of Schizophrenia With the Use of PANSS: An International Multi-Center Study

    Get PDF
    INTRODUCTION: A specific clinically relevant staging model for schizophrenia has not yet been developed. The aim of the current study was to evaluate the factor structure of the PANSS and develop such a staging method. METHODS: Twenty-nine centers from 25 countries contributed 2358 patients aged 37.21 ± 11.87 years with schizophrenia. Analysis of covariance, Exploratory Factor Analysis, Discriminant Function Analysis, and inspection of resultant plots were performed. RESULTS: Exploratory Factor Analysis returned 5 factors explaining 59% of the variance (positive, negative, excitement/hostility, depression/anxiety, and neurocognition). The staging model included 4 main stages with substages that were predominantly characterized by a single domain of symptoms (stage 1: positive; stages 2a and 2b: excitement/hostility; stage 3a and 3b: depression/anxiety; stage 4a and 4b: neurocognition). There were no differences between sexes. The Discriminant Function Analysis developed an algorithm that correctly classified >85% of patients. DISCUSSION: This study elaborates a 5-factor solution and a clinical staging method for patients with schizophrenia. It is the largest study to address these issues among patients who are more likely to remain affiliated with mental health services for prolonged periods of time.status: publishe

    Staging of Schizophrenia With the Use of PANSS : An International Multi-Center Study

    No full text
    Introduction A specific clinically relevant staging model for schizophrenia has not yet been developed. The aim of the current study was to evaluate the factor structure of the PANSS and develop such a staging method. Methods Twenty-nine centers from 25 countries contributed 2358 patients aged 37.21 ± 11.87 years with schizophrenia. Analysis of covariance, Exploratory Factor Analysis, Discriminant Function Analysis, and inspection of resultant plots were performed. Results Exploratory Factor Analysis returned 5 factors explaining 59% of the variance (positive, negative, excitement/hostility, depression/anxiety, and neurocognition). The staging model included 4 main stages with substages that were predominantly characterized by a single domain of symptoms (stage 1: positive; stages 2a and 2b: excitement/hostility; stage 3a and 3b: depression/anxiety; stage 4a and 4b: neurocognition). There were no differences between sexes. The Discriminant Function Analysis developed an algorithm that correctly classified &gt;85% of patients. Discussion This study elaborates a 5-factor solution and a clinical staging method for patients with schizophrenia. It is the largest study to address these issues among patients who are more likely to remain affiliated with mental health services for prolonged periods of time.Funding Agencies|NHMRC Senior Principal Research FellowshipNational Health and Medical Research Council of Australia [APP1059660, APP1156072]</p

    Staging of Schizophrenia With the Use of PANSS: An International Multi-Center Study

    No full text
    corecore