829 research outputs found

    Equine Sarcoid

    Get PDF
    The equine sarcoid is the most common skin neoplasia in the horse. It has a worldwide distribution and can also affect other equids such as donkeys, zebras, and mules. All breeds can develop the disease at any age, with no sex predilection, although geldings seem to be overrepresented. This fibroblastic neoplasm has several clinical presentations and microscopic features and has a nonmetastatic behavior but can be severely locally invasive. In many cases, multiple sarcoids may develop simultaneously or sequentially during their life and spontaneous remission is rarely reported. The etiology is multifactorial and involves bovine papillomaviruses, genetic, and environmental factors. Treatment options include different modalities depending on multiple factors: lesion type, location and extent, individual patient, facilities, owner, and financial issues

    Concurrent eruptions at Etna, Stromboli, and Vulcano: casualty or causality?

    Get PDF
    Anecdotes of concurrent eruptions at Etna, Stromboli, and Vulcano (Southern Italy) have persisted for more than 2000 years and volcanologists in recent and past times have hypothesized a causal link among these volcanoes. Here this hypothesis is tested. To introduce the problem and provide examples of the type of expected volcanic phenomena, narratives of the most notable examples of concurrent eruptions are provided. Then the frequency of eruptions at each individual volcano is analysed for about the last 300 years and the expected probability of concurrent eruptions is calculated to compare it to the observed probability. Results show that the occurrence of concurrent eruptions is often more frequent than a random probability, particularly for the Stromboli-Vulcano pair. These results are integrated with a statistical analysis of the earthquake catalogue to find evidence of linked seismicity in the Etnean and Aeolian areas. Results suggest a moderate incidence of non-random concurrent eruptions, but available data are temporally limited and do not allow an unequivocal identification of plausible triggers; our results, however, are the first attempt to quantify a more-than-2000-years-old curious observation and constitute a starting point for more sophisticated analyses of new data in the future. We look forward to our prediction of a moderate incidence of concurrent eruptions being confirmed or refuted with the passage of time and occurrence of new events

    Role of lateral mantle flow in the evolution of subduction systems: insights from laboratory experiments

    Get PDF
    We present 3-D laboratory experiments constructed to investigate the pattern of mantle flow around a subducting slab under different boundary conditions. In particular we present a set of experiments, characterized by different conditions imposed at the trailing edge of the subducting plate (that is, plate fixed in the far field, plate detached in the far field, imposed plate motion). Experiments have been performed using a silicone slab floating inside a honey tank to simulate a thin viscous lithosphere subducting in a viscous mantle. For each set, we show differences between models that do or do not include the possibility of out-of-plane lateral flow in the mantle by varying the lateral boundary conditions. Our results illustrate how a subducting slab vertically confined over a 660-km equivalent depth can be influenced in its geometry and in its kinematics by the presence or absence of possible lateral pathways. On the basis of these results we show implications for natural subduction systems and we highlight the importance of suitable simulations of lateral viscosity variations to obtain a realistic simulation of the history of subductio

    Subduction Duration and Slab Dip

    Get PDF
    The dip angles of slabs are among the clearest characteristics of subduction zones, but the factors that control them remain obscure. Here, slab dip angles and subduction parameters, including subduction duration, the nature of the overriding plate, slab age, and convergence rate, are determined for 153 transects along subduction zones for the present day. We present a comprehensive tabulation of subduction duration based on isotopic ages of arc initiation and stratigraphic, structural, plate tectonic and seismic indicators of subduction initiation. We present two ages for subduction zones, a long‐term age and a reinitiation age. Using cross correlation and multivariate regression, we find that (1) subduction duration is the primary parameter controlling slab dips with slabs tending to have shallower dips at subduction zones that have been in existence longer; (2) the long‐term age of subduction duration better explains variation of shallow dip than reinitiation age; (3) overriding plate nature could influence shallow dip angle, where slabs below continents tend to have shallower dips; (4) slab age contributes to slab dip, with younger slabs having steeper shallow dips; and (5) the relations between slab dip and subduction parameters are depth dependent, where the ability of subduction duration and overriding plate nature to explain observed variation decreases with depth. The analysis emphasizes the importance of subduction history and the long‐term regional state of a subduction zone in determining slab dip and is consistent with mechanical models of subduction

    Unraveling topography around subduction zones from laboratory models

    Get PDF
    International audienceThe relief around subduction zones results from the interplay of dynamic processes that may locally exceed the (iso)static contributions. The viscous dissipation of the energy in and around subduction zones is capable of generating kilometer scale vertical ground movements. In order to evaluate dynamic topography in a selfconsistent subduction system, we carried out a set of laboratory experiments, wherein the lithosphere and mantle are simulated by means of Newtonian viscous materials, namely silicone putty and glucose syrup. Models are kept in their most simple form and are made of negative buoyancy plates, of variable width and thickness, freely plunging into the syrup. The surface of the model and the top of the slab are scanned in three dimensions. A forebulge systematically emerges from the bending of the viscous plate, adjacent to the trench. With a large wavelength, dynamic pressure offsets the foreside and backside of the slab by ~500 m on average. The suction, that accompanies the vertical descent of the slab depresses the surface on both sides. At a distance equal to the half-width of the slab, the topographic depression amounts to ~500 m on average and becomes negligible at a distance that equals the width of the slab. In order to explore the impact of slab rollback on the topography, the trailing edge of the plates is alternatively fixed to (fixed mode) and freed from (free mode) the end wall of the tank. Both the pressure and suction components of the topography are ~30% lower in the free mode, indicating that slab rollback fosters the dynamic subsidence of upper plates. Our models are compatible with first order observations of the topography around the East Scotia, Tonga, Kermadec and Banda subduction zones, which exhibit anomalous depths of nearly 1 km as compared to adjacent sea floor of comparable age

    Subduction dynamics as revealed by trench migration

    No full text
    International audienceNew estimates of trench migration rates allow us to address the dynamics of trench migration and back-arc strain. We show that trench migration is primarily controlled by the subducting plate velocity V-sub, which largely depends on its age at the trench. Using the hot and weak arc to back-arc region as a strain sensor, we define neutral arcs characterized by the absence of significant strain, meaning places where the forces (slab pull, bending, and anchoring) almost balance along the interface between the plates. We show that neutral subduction zones satisfy the kinematic relation between trench and subducting plate absolute motions: V-t = 0.5V(sub) - 2.3 (in cm a(-1)) in the HS3 reference frame. Deformation occurs when the velocity combination deviates from kinematic equilibrium. Balancing the torque components of the forces acting at the trench indicates that stiff (old) subducting plates facilitate trench advance by resisting bending

    Opposite subduction polarity in adjacent plate segments

    Get PDF
    Active and fossil subduction systems consisting of two adjacent plates with opposite retreating directions occur in several areas on Earth, as the Mediterranean or Western Pacific. The goal of this work is to better understand the first-order plate dynamics of these systems using the results of experimental models. The laboratory model is composed of two separate plates made of silicon putty representing the lithosphere, on top of a tank filled with glucose syrup representing the mantle. The set of experiments is designed to test the influence of the width of plates and the initial separation between them on the resulting trench velocities, deformation of plates, and mantle flow. Results show that the mantle flow induced by both plates is asymmetric relative to the axis of each plate causing a progressive merging of the toroidal cells that prevents a steady state phase of the subduction process and generates a net outward drag perpendicular to the plates. Trench velocities increase when trenches approach each other and decrease when they separate after their intersection. The trench curvature of both plates increases linearly with time during the entire evolution of the process regardless their width and initial separation. The interaction between the return flows associated with each retreating plate, particularly in the interplate region, is stronger for near plate configurations and correlates with variations of rollback velocities. We propose that the inferred first-order dynamics of the presented analog models can provide relevant clues to understand natural complex subduction systemsPeer ReviewedPostprint (published version

    Slab stiffness control of trench motion: Insights from numerical models

    Get PDF
    Subduction zones are not static features, but trenches retreat (roll back) or advance. Here, we investigate the dominant dynamic controls on trench migration by means of two- and three-dimensional numerical modeling of subduction. This investigation has been carried out by systematically varying the geometrical and rheological model parameters. Our viscoplastic models illustrate that advancing style subduction is promoted by a thick plate, a large viscosity ratio between plate and mantle, and a small density contrast between plate and mantle or an intermediate width (w ∼ 1300 km). Advancing slabs dissipate ∼45% to ∼50% of the energy in the system. Thin plates with relatively low viscosity or relatively high density, or wide slabs (w ∼ 2300 km), on the other hand, promote subduction in the retreating style (i.e., slab roll-back). The energy dissipated by a retreating slab is ∼35% to ∼40% of the total dissipated energy. Most of the energy dissipation occurs in the mantle to accommodate the slab motion, whereas the lithosphere dissipates the remaining part to bend and “unbend.” With a simple scaling law we illustrate that this complex combination of model parameters influencing trench migration can be reduced to a single one: plate stiffness. Stiffer slabs cause the trench to advance, whereas more flexible slabs lead to trench retreat. The reason for this is that all slabs will bend into the subduction zone because of their low plastic strength near the surface, but stiff slabs have more difficulty “unbending” at depth, when arriving at the 660-km discontinuity. Those bent slabs tend to cause the trench to advance. In a similar way, variation of the viscoplasticity parameters in the plate may change the style of subduction: a low value of friction coefficient weakens the plate and results in a retreating style, while higher values strengthen the plate and promote the advancing subduction style. Given the fact that also on Earth the oldest (and therefore probably stiffest) plates have the fastest advancing trenches, we hypothesize that the ability of slabs to unbend after subduction forms the dominant control on trench migration

    Water chemistry and trophic evaluation of Lake Albano (Central Italy): a four year water monitoring study

    Get PDF
    The crater lake Lake Albano is an increasingly diminishing water resource in terms of volume, the lake level has dropped more than four meters since the 1960s, and water quality resulting from elevated levels of nitrogen and phosphorus. The area of the lake, and the volcano as a whole, is also considered to be geologically hazardous due to continual shallow seismic activity, gaseous emissions and hydrothermal activity. Therefore, most research has been focussed on the geological aspects of the Albano lake system, whilst long-term limnological studies have been lacking. A meromictic classification was given to the lake, but this was based on one year studies of the surface water only. Presented and discussed are the results of a water chemistry and biological study of the full depth profile of Lake Albano from 2004 to 2008. During winter 2005-2006 the lake underwent a complete overturn, resulting in an influx of nutrient rich hypolimnetic water into the upper productive layers and oxygenated epilimnetic water into the deepest water layers. The effect of full overturn on the phytoplankton community is described and compared with those of meromictic years. The interplay between natural and anthropological processes on water quality and water usages is also discussed

    Machine Learning Can Predict the Timing and Size of Analog Earthquakes

    Get PDF
    Despite the growing spatiotemporal density of geophysical observations at subduction zones, predicting the timing and size of future earthquakes remains a challenge. Here we simulate multiple seismic cycles in a laboratory‐scale subduction zone. The model creates both partial and full margin ruptures, simulating magnitude M_w 6.2–8.3 earthquakes with a coefficient of variation in recurrence intervals of 0.5, similar to real subduction zones. We show that the common procedure of estimating the next earthquake size from slip‐deficit is unreliable. On the contrary, machine learning predicts well the timing and size of laboratory earthquakes by reconstructing and properly interpreting the spatiotemporally complex loading history of the system. These results promise substantial progress in real earthquake forecasting, as they suggest that the complex motion recorded by geodesists at subduction zones might be diagnostic of earthquake imminence
    corecore