23 research outputs found
Initial carbon, nitrogen, and phosphorus fluxes following ponderosa pine restoration treatments
Southwestern ponderosa pine forests were dramatically altered by fire regime disruption that accompanied Euro-American settlement in the 1800s. Major changes include increased tree density, diminished herbaceous cover, and a shift from a frequent lowintensity fire regime to a stand-replacing fire regime. Ecological restoration via thinning and prescribed burning is being widely applied to return forests to the pre-settlement condition, but the effects of restoration on ecosystem function are unknown. We measured carbon (C), nitrogen (N), and phosphorus (P) fluxes during the first two years after the implementation of a replicated field experiment comparing thinning and composite (thinning, forest floor fuel reduction, and prescribed burning) restoration treatments to untreated controls in a ponderosa pine forest in northern Arizona, USA. Total net primary productivity (260 g Cm22yr21) was similar among treatments because a 3050(percent) decrease in pine foliage and fine-root production in restored ecosystems was balanced by greater wood, coarse root, and herbaceous production. Herbaceous plants accounted for ,20(percent) of total plant C, N, and P uptake in the controls but from 25(percent) to 70(percent) in restored plots. Total plant N uptake was ;3 g Nm22yr21 in all treatments, but net N mineralization was just one-half and twothirds of this value in the control and composite restoration, respectively. Element flux rates in controls generally declined more in a drought year than rates in restoration treatments. In this ponderosa pine forest, ecological restoration that emulated pre-settlement stand structure and fire characteristics had a small effect on plant C, N, and P fluxes at the whole ecosystem level because lower pine foliage and fine-root fluxes in treated plots (compared to controls) were approximately balanced by higher fluxes in wood and herbaceous plants
Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era
Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.(TABLE)Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013').This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product.This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike
Recommended from our members