289 research outputs found

    Low altitude temperature and humidity profile data for application to aircraft noise propagation

    Get PDF
    A data search of the weather statistics from 11 widely dispersed geographical locations within the continental United States was conducted. The sites, located long both sea-coasts and in the interior, span the northern, southern, and middle latitudes. The weather statistics, retrieved from the records of these 11 sites, consist of two daily observations taken over a 10-year period. The data were sorted with respect to precipitation and surface winds and classified into temperature intervals of 5 C and relative humidity intervals of 10 percent for the lower 1400 meters of the atmosphere. These data were assembled in a statistical format and further classified into altitude increments of 200 meters. The data are presented as sets of tables for each site by season of the year and include both daily observations

    Chemical similarities between Galactic bulge and local thick disk red giant stars

    Get PDF
    The evolution of the Milky Way bulge and its relationship with the other Galactic populations is still poorly understood. The bulge has been suggested to be either a merger-driven classical bulge or the product of a dynamical instability of the inner disk. To probe the star formation history, the initial mass function and stellar nucleosynthesis of the bulge, we performed an elemental abundance analysis of bulge red giant stars. We also completed an identical study of local thin disk, thick disk and halo giants to establish the chemical differences and similarities between the various populations. High-resolution infrared spectra of 19 bulge giants and 49 comparison giants in the solar neighborhood were acquired with Gemini/Phoenix. All stars have similar stellar parameters but cover a broad range in metallicity. A standard 1D local thermodynamic equilibrium analysis yielded the abundances of C, N, O and Fe. A homogeneous and differential analysis of the bulge, halo, thin disk and thick disk stars ensured that systematic errors were minimized. We confirm the well-established differences for [O/Fe] (at a given metallicity) between the local thin and thick disks. For the elements investigated, we find no chemical distinction between the bulge and the local thick disk, which is in contrast to previous studies relying on literature values for disk dwarf stars in the solar neighborhood. Our findings suggest that the bulge and local thick disk experienced similar, but not necessarily shared, chemical evolution histories. We argue that their formation timescales, star formation rates and initial mass functions were similar.Comment: Accepted for publication in A&A, 5 page

    Early Galactic Evolution of Carbon, Nitrogen and Oxygen

    Get PDF
    We present results on carbon, nitrogen, and oxygen abundances for a sample of unevolved metal-poor stars with metallicities in the range -0.3< [Fe/H]< -3. Oxygen abundances derived from different indicators are compared showing consistently that in the range 0.3 >[Fe/H]>-3.0, the [O/Fe] ratio increases from approximately 0 to 1. We find a good agreement between abundances based on the forbidden line, the OH and IR triplet lines when gravities based on Hipparcos} parallaxes are considered for the sample stars. Gravities derived from LTE ionization balance in metal-poor stars with [Fe/H]< -1 are likely too low, and could be responsible for an underestimation of the oxygen abundances derived using the [OI] line. [C/Fe] and [N/Fe] ratios appear to be constant, independently of metallicity, in the same range. However, they show larger scatter than oxygen at a given metallicity, which could reflect the larger variety of stellar production sites for these other elements.Comment: 10 pages, 3 figures, To appear in the proceedings of the conference "The Chemical Evolution of The Milky Way: Stars versus Clusters", eds. F. Matteucci and F. Giovannelli, Vulcano, Italy, September 20-24 199

    Population Response of Three Quail Species to Habitat Restoration in South Texas

    Get PDF
    Maintaining and increasing usable space is paramount for maintaining and increasing wild quail. Aside from weather and other factors that can temporarily reduce densities, range-wide, no factor has as much influence on quail populations as the amount of habitat present across the landscape. In the field of quail management, ‘‘bad news’’ is the norm, as many articles begin by explaining how a select species has declined. Here we provide good news and use 4 empirical examples of population increases for 3 quail species following creation of usable space and restoration of patch connectivity. From 2008–2014, a suite of independent projects aimed at increasing usable space for quail was initiated across South Texas. These projects included 3 focused on northern bobwhites (Colinus virginianus), 1 focused on scaled quail (Callipepla squamata), and 1 landowner-executed project focused on Montezuma quail (Cyrtonyx montezumae). Through the correction of attributes limiting habitat, bobwhite numbers increased 22–378% across 2 studies. On one particular study site, native grassland restoration resulted in the colonization of bobwhites from adjacent areas to 1 bobwhite/1.2 ha from nearly 0. For scaled quail in South Texas, reducing buffelgrass standing crop via grazing from about 2,240 kg/ha to 1,008 kg/ha resulted in the recolonization of a previously unoccupied habitat patch to a density of 1 scaled quail/6 ha. Finally, clearing monotypic stands of the invasive native plant, ash juniper (Juniperus ashei) in the Edwards Plateau of Texas, resulted in the reestablishment of native grasses and forbs and thus recolonization by Montezuma quail from nearby areas. Although habitat restoration and management can be a painstaking and lengthy process, addressing limiting factors to quail occupancy is the only known way to increase wild quail populations. We hope that highlighting these particular studies will provide inspiration to those interested in restoring and increasing quail across the US

    The RAVE Survey: Constraining the Local Galactic Escape Speed

    Get PDF
    We report new constraints on the local escape speed of our Galaxy. Our analysis is based on a sample of high velocity stars from the RAVE survey and two previously published datasets. We use cosmological simulations of disk galaxy formation to motivate our assumptions on the shape of the velocity distribution, allowing for a significantly more precise measurement of the escape velocity compared to previous studies. We find that the escape velocity lies within the range 498\kms < \ve < 608 \kms (90 per cent confidence), with a median likelihood of 544\kms. The fact that \ve^2 is significantly greater than 2\vc^2 (where \vc=220\kms is the local circular velocity) implies that there must be a significant amount of mass exterior to the Solar circle, i.e. this convincingly demonstrates the presence of a dark halo in the Galaxy. For a simple isothermal halo, one can calculate that the minimum radial extent is ∌58\sim58 kpc. We use our constraints on \ve to determine the mass of the Milky Way halo for three halo profiles. For example, an adiabatically contracted NFW halo model results in a virial mass of 1.42−0.54+1.14×1012M⊙1.42^{+1.14}_{-0.54}\times10^{12}M_\odot and virial radius of 305−45+66305^{+66}_{-45} kpc (90 per cent confidence). For this model the circular velocity at the virial radius is 142^{+31}_{-21}\kms. Although our halo masses are model dependent, we find that they are in good agreement with each other.Comment: 19 pages, 9 figures, MNRAS (accepted). v2 incorporates minor cosmetic revisions which have no effect on the results or conclusion

    Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants

    Full text link
    We obtained FLAMES-GIRAFFE spectra (R=22,500) at the ESO Very Large Telescope for 650 bulge red giant branch (RGB) stars and performed spectral synthesis to measure Mg, Ca, Ti, and Si abundances. This sample is composed of 474 giant stars observed in 3 fields along the minor axis of the Galactic bulge and at latitudes b=-4, b=-6, b=-12. Another 176 stars belong to a field containing the globular cluster NGC 6553, located at b=-3 and 5 degrees away from the other three fields along the major axis. Our results confirm, with large number statistics, the chemical similarity between the Galactic bulge and thick disk, which are both enhanced in alpha elements when compared to the thin disk. In the same context, we analyze [alpha/Fe] vs. [Fe/H] trends across different bulge regions. The most metal rich stars, showing low [alpha/Fe] ratios at b=-4 disappear at higher Galactic latitudes in agreement with the observed metallicity gradient in the bulge. Metal-poor stars ([Fe/H]<-0.2) show a remarkable homogeneity at different bulge locations. We have obtained further constrains for the formation scenario of the Galactic bulge. A metal-poor component chemically indistinguishable from the thick disk hints for a fast and early formation for both the bulge and the thick disk. Such a component shows no variation, neither in abundances nor kinematics, among different bulge regions. A metal-rich component showing low [alpha/Fe] similar to those of the thin disk disappears at larger latitudes. This allows us to trace a component formed through fast early mergers (classical bulge) and a disk/bar component formed on a more extended timescale.Comment: 13 pages, 17 figures. Accepted for publication in Astronomy and Astrophysic

    Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc

    Get PDF
    The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurately trace the chemical evolution of a stellar population, is under debate. In particular, recent observations of a few microlensed dwarf stars give a very different picture of the evolution of the Bulge from that given by the giant stars. [ABRIDGED] We perform a detailed elemental abundance analysis of dwarf stars in the Galactic bulge, based on high-resolution spectra that were obtained while the stars were optically magnified during gravitational microlensing events. [ABRIDGED] We present detailed elemental abundances and stellar ages for six new dwarf stars in the Galactic bulge. Combining these with previous events, here re-analysed with the same methods, we study a homogeneous sample of 15 stars, which constitute the largest sample to date of microlensed dwarf stars in the Galactic bulge. We find that the stars span the full range of metallicities from [Fe/H]=-0.72 to +0.54, and an average metallicity of =-0.08+/-0.47, close to the average metallicity based on giant stars in the Bulge. Furthermore, the stars follow well-defined abundance trends, that for [Fe/H]<0 are very similar to those of the local Galactic thick disc. This suggests that the Bulge and the thick disc have had, at least partially, comparable chemical histories. At sub-solar metallicities we find the Bulge dwarf stars to have consistently old ages, while at super-solar metallicities we find a wide range of ages. Using the new age and abundance results from the microlensed dwarf stars we investigate possible formation scenarios for the Bulge.Comment: New version accepted for publication in Astronomy and Astrophysic

    Multi-Element Abundance Measurements from Medium-Resolution Spectra. II. Catalog of Stars in Milky Way Dwarf Satellite Galaxies

    Get PDF
    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 red giant stars that are likely members of eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters. We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing our medium-resolution spectroscopic measurements to high-resolution spectroscopic abundances of the same stars. For this purpose, our DEIMOS sample included 132 red giants with published high-resolution spectroscopy in globular clusters, the MW halo field, and dwarf galaxies. The standard deviations of the differences in [Fe/H] and [alpha/Fe] (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.Comment: 26 pages, 22 figures, 4 machine-readable tables (available in the source file; click "Other formats"); accepted for publication in ApJ Supplements; updated acknowledgments in v

    A precision study of two eclipsing white dwarf plus M dwarf binaries

    Get PDF
    We use a combination of X-shooter spectroscopy, ULTRACAM high-speed photometry and SOFI near-infrared photometry to measure the masses and radii of both components of the eclipsing post common envelope binaries SDSS J1212-0123 and GK Vir. For both systems we measure the gravitational redshift of the white dwarf and combine it with light curve model fits to determine the inclinations, masses and radii. For SDSS J1212-0123 we find a white dwarf mass and radius of 0.439 +/- 0.002 Msun and 0.0168 +/- 0.0003 Rsun, and a secondary star mass and radius of 0.273 +/- 0.002 Msun and 0.306 +/- 0.007 Rsun. For GK Vir we find a white dwarf mass and radius of 0.564 +/- 0.014 Msun and 0.0170 +/- 0.0004 Rsun, and a secondary star mass and radius of 0.116 +/- 0.003 Msun and 0.155 +/- 0.003 Rsun. The mass and radius of the white dwarf in GK Vir are consistent with evolutionary models for a 50,000K carbon-oxygen core white dwarf. Although the mass and radius of the white dwarf in SDSS J1212-0123 are consistent with carbon-oxygen core models, evolutionary models imply that a white dwarf with such a low mass and in a short period binary must have a helium core. The mass and radius measurements are consistent with helium core models but only if the white dwarf has a very thin hydrogen envelope, which has not been predicted by evolutionary models. The mass and radius of the secondary star in GK Vir are consistent with evolutionary models after correcting for the effects of irradiation by the white dwarf. The secondary star in SDSS J1212-0123 has a radius ~9 per cent larger than predicted.Comment: 21 pages, 14 Figures and 11 Tables. Accepted for publication in MNRA

    Evolutionary synthesis of galaxies at high spectral resolution with the code PEGASE-HR

    Full text link
    We present PEGASE-HR, a new stellar population synthesis program generating high resolution spectra (R=10 000) over the optical range lambda=400--680 nm. It links the spectro-photometric model of galaxy evolution PEGASE.2 (Fioc & Rocca-Volmerange 1997) to an updated version of the ELODIE library of stellar spectra observed with the 193 cm telescope at the Observatoire de Haute-Provence (Prugniel & Soubiran 2001a). The ELODIE star set gives a fairly complete coverage of the Hertzprung-Russell (HR) diagram and makes it possible to synthesize populations in the range [Fe/H]=-2 to +0.4. This code is an exceptional tool for exploring signatures of metallicity, age, and kinematics. We focus on a detailed study of the sensitivity to age and metallicity of the high-resolution stellar absorption lines and of the classical metallic indices proposed until now to solve the age-metallicity degeneracy. Validity tests on several stellar lines are performed by comparing our predictions for Lick indices to the models of other groups. The comparison with the lower resolution library BaSeL (Lejeune et al. 1997) confirms the quality of the ELODIE library when used for simple stellar populations (SSPs) from 10 Myr to 20 Gyr. Predictions for the evolved populations of globular clusters and elliptical galaxies are given and compared to observational data. Two new high-resolution indices are proposed around the Hgamma line. They should prove useful in the analysis of spectra from the new generation of telescopes and spectrographs.Comment: 18 pages, 18 figures. Astronomy & Astrophysics, in press. The models are available at http://www.iap.fr/pegase
    • 

    corecore