918 research outputs found

    The Archigram Archive

    Get PDF
    The Archigram archival project made the works of seminal experimental architectural group Archigram available free online for an academic and general audience. It was a major archival work, and a new kind of digital academic archive, displaying material held in different places around the world and variously owned. It was aimed at a wide online design community, discovering it through Google or social media, as well as a traditional academic audience. It has been widely acclaimed in both fields. The project has three distinct but interlinked aims: firstly to assess, catalogue and present the vast range of Archigram's prolific work, of which only a small portion was previously available; secondly to provide reflective academic material on Archigram and on the wider picture of their work presented; thirdly to develop a new type of non-ownership online archive, suitable for both academic research at the highest level and for casual public browsing. The project hybridised several existing methodologies. It combined practical archival and editorial methods for the recovery, presentation and contextualisation of Archigram's work, with digital web design and with the provision of reflective academic and scholarly material. It was designed by the EXP Research Group in the Department of Architecture in collaboration with Archigram and their heirs and with the Centre for Parallel Computing, School of Electronics and Computer Science, also at the University of Westminster. It was rated 'outstanding' in the AHRC's own final report and was shortlisted for the RIBA research awards in 2010. It received 40,000 users and more than 250,000 page views in its first two weeks live, taking the site into twitter’s Top 1000 sites, and a steady flow of visitors thereafter. Further statistics are included in the accompanying portfolio. This output will also be returned to by Murray Fraser for UCL

    Modelling the Galactic bar using OGLE-II Red Clump Giant Stars

    Get PDF
    Red clump giant stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration database to constrain analytic tri-axial models for the Galactic bar. We find the bar major axis is oriented at an angle of 24 - 27 degrees to the Sun-Galactic centre line-of-sight. The ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane x_0, y_0, and vertical bar scale length z_0, is x_0 : y_0 : z_0 = 10 : 3.5 : 2.6, suggesting a slightly more prolate bar structure than the working model of Gerhard (2002) which gives the scale length ratios as x_0 : y_0 : z_0 = 10 : 4 : 3 .Comment: 15 pages, 10 figures, accepted for publication in MNRAS. Supplementary material available online: 10 pages, 10 figure

    A New Photometric Model of the Galactic Bar using Red Clump Giants

    Full text link
    We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants (RCGs) from the OGLE-III survey. The data were recently published by Nataf et al. (2013) for 9019 fields towards the bulge and have 2.94×1062.94\times 10^6 RC stars over a viewing area of 90.25 deg290.25 \,\textrm{deg}^2. The data include the number counts, mean distance modulus (μ\mu), dispersion in μ\mu and full error matrix, from which we fit the data with several tri-axial parametric models. We use the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and find that the best-fit model is the E3E_3 model, with the distance to the GC is 8.13 kpc, the ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane x0,y0x_{0},y_{0}, and vertical bar scale length z0z_0, is x0:y0:z0≈1.00:0.43:0.40x_0:y_0:z_0 \approx 1.00:0.43:0.40 (close to being prolate). The scale length of the stellar density profile along the bar's major axis is ∼\sim 0.67 kpc and has an angle of 29.4∘29.4^\circ, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is 2.78×1062.78 \times 10^6, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic centre, the excess to the estimated mass content is ∼5.8\sim 5.8%. We estimate the total mass of the bar is ∼1.8×1010M⊙\sim 1.8 \times 10^{10} M_\odot. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.Comment: 15 pages, 6 figures, 4 tables. MNRAS accepte

    Microlensing of close binary stars

    Full text link
    The gravity due to a multiple-mass system has a remarkable gravitational effect: the extreme magnification of background light sources along extended so-called caustic lines. This property has been the channel for some remarkable astrophysical discoveries over the past decade, including the detection and characterisation of extra-solar planets, the routine analysis of limb-darkening, and, in one case, limits set on the apparent shape of a star several kiloparsec distant. In this paper we investigate the properties of the microlensing of close binary star systems. We show that in some cases it is possible to detect flux from the Roche lobes of close binary stars. Such observations could constrain models of close binary stellar systems.Comment: 10 pages, accepted to MNRA

    Interferometric Visibility and Closure Phase of Microlensing Events with Finite Source Size

    Full text link
    Interferometers from the ground and space will be able to resolve the two images in a microlensing event. This will at least partially lift the inherent degeneracy between physical parameters in microlensing events. To increase the signal-to-noise ratio, intrinsically bright events with large magnifications will be preferentially selected as targets. These events may be influenced by finite source size effects both photometrically and astrometrically. Using observed finite source size events as examples, we show that the fringe visibility can be affected by 5% - 10%, and the closure phase by a few degrees: readily detectable by ground and space interferometers. Such detections will offer unique information about the lens-source trajectory relative to the baseline of the interferometers. Combined with photometric finite source size effects, interferometry offers a way to measure the angular sizes of the source and the Einstein radius accurately. Limb-darkening changes the visibility by a small amount compared with a source with uniform surface brightness, marginally detectable with ground-based instruments. We discuss the implications of our results for the plans to make interferometric observations of future microlensing events.Comment: 18 pages, 9 figures, submitted to MNRA

    Faint-source-star planetary microlensing: the discovery of the cold gas-giant planet OGLE-2014-BLG-0676Lb

    Get PDF
    We report the discovery of a planet – OGLE-2014-BLG-0676Lb– via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNET/Las Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and μ-FUN. All analyses of the light-curve data favour a lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 ± 0.13) × 10−3. Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09^(+1.02)_(−1.12) MJ planet orbiting a 0.62^(+0.20)_(−0.22) M_⊙ host star at a deprojected orbital separation of 4.40^(+2.16)_(−1.46) au. The distance to the lens system is 2.22^(+0.96)_(−0.83) kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discovered using gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation

    Planetary Microlensing at High Magnification

    Full text link
    Simulations of planetary microlensing at high magnification that were carried out on a cluster computer are presented. It was found that the perturbations due to two-thirds of all planets occur in the time interval [-0.5t_FWHM, 0.5t_ FWHM] with respect to the peak of the microlensing light curve, where t_FWHM is typically about 14 hours. This implies that only this restricted portion of the light curve need be intensively monitored for planets, a very significant practical advantage. Nearly all planetary detections in high magnification events will not involve caustic crossings. We discuss the issues involved in determining the planetary parameters in high magnification microlensing events. Earth mass planets may be detected with 1-m class telescopes if their projected orbital radii lie within about 1.5 - 2.5 AU. Giant planets are detectable over a much larger region. For multi-planet systems the perturbations due to individual planets can be separated under certain conditions. The size of the source star needs to be determined independently, but the presence of spots on the source star is likely to be negligible, as is the effect of planetary motion during an event.Comment: 12 pages, 13 embedded figures, accepted for publication by MNRA
    • …
    corecore