511 research outputs found

    Transparency of 0.2% GdCl3 Doped Water in a Stainless Steel Test Environment

    Full text link
    The possibility of neutron and neutrino detection using water Cerenkov detectors doped with gadolinium holds the promise of constructing very large high-efficiency detectors with wide-ranging application in basic science and national security. This study addressed a major concern regarding the feasibility of such detectors: the transparency of the doped water to the ultraviolet Cerenkov light. We report on experiments conducted using a 19-meter water transparency measuring instrument and associated materials test tank. Sensitive measurements of the transparency of water doped with 0.2% GdCl3 at 337nm, 400nm and 420nm were made using this instrument. These measurements indicate that GdCl3 is not an appropriate dopant in stainless steel constructed water Cerenkov detectors.Comment: 17 pages, 11 figures, corrects typos, changes formatting, adds error bars to figure

    Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    Get PDF
    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained by the current phenomenology. Such a constraint can be improved, however, by future data from the KamLAND experiment. In the standard MSW case, we also perform an updated analysis of two-family active oscillations of solar and reactor neutrinos.Comment: 8 pages + 5 figyre

    Weak and Electromagnetic Nuclear Decay Signatures for Neutrino Reactions in SuperKamiokande

    Full text link
    We suggest the study of events in the SuperKamiokande neutrino data due to charged- and neutral-current neutrino reactions followed by weak and/or electromagnetic decays of struck nuclei and fragments thereof. This study could improve the prospects of obtaining evidence for τ\tau production from νμντ\nu_\mu \to \nu_\tau oscillations and could augment the data sample used to disfavor νμνsterile\nu_\mu \to \nu_{sterile} oscillations.Comment: 7 pages, latex, to appear in Phys. Rev. Let

    Neutrino Masses, Mixing and Oscillations

    Full text link
    Basics of neutrino oscillations is discussed. Importance of time-energy uncertainty relation is stressed. Neutrino oscillations in the leading approximation and evidence for neutrino oscillations are briefly summarized.Comment: A report at the International School of Nuclear Physics ``Neutrino in Cosmology, in Astro, Particle and Nuclear Physics'' Erice, Italy, Sept. 16-24, 200

    Outer Membrane Vesicles of Helicobacter pylori TK1402 are Involved in Biofilm Formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Helicobacter pylori </it>forms biofilms on glass surfaces at the air-liquid interface in <it>in vitro </it>batch cultures; however, biofilms of <it>H. pylori </it>have not been well characterized. In the present study, we analyzed the ability of <it>H. pylori </it>strains to form biofilms and characterized the underlying mechanisms of <it>H. pylori </it>biofilm formation.</p> <p>Results</p> <p>Strain TK1402 showed strong biofilm forming ability relative to the other strains in Brucella broth supplemented with 7% FCS. The strong biofilm forming ability of TK1402 is reflected the relative thickness of the biofilms. In addition, outer membrane vesicles (OMV) were detected within the matrix of only the TK1402 biofilms. Biofilm formation was strongly correlated with the production of OMV in this strain. We further observed that strain TK1402 did not form thick biofilms in Brucella broth supplemented with 0.2% β-cyclodextrin. However, the addition of the OMV-fraction collected from TK1402 could enhance biofilm formation.</p> <p>Conclusion</p> <p>The results suggested that OMV produced from TK1402 play an important role in biofilm formation in strain TK1402.</p

    Minimalistic Neutrino Mass Model

    Get PDF
    We consider the simplest model which solves the solar and atmospheric neutrino puzzles, in the sense that it contains the smallest amount of beyond the Standard Model ingredients. The solar neutrino data is accounted for by Planck-mass effects while the atmospheric neutrino anomaly is due to the existence of a single right-handed neutrino at an intermediate mass scale between 10^9 GeV and 10^14 GeV. Even though the neutrino mixing angles are not exactly predicted, they can be naturally large, which agrees well with the current experimental situation. Furthermore, the amount of lepton asymmetry produced in the early universe by the decay of the right-handed neutrino is very predictive and may be enough to explain the current baryon-to-photon ratio if the right-handed neutrinos are produced out of thermal equilibrium. One definitive test for the model is the search for anomalous seasonal effects at Borexino.Comment: 19 pages, 3 figures, references added, results unchange

    Neutral-Current Atmospheric Neutrino Flux Measurement Using Neutrino-Proton Elastic Scattering in Super-Kamiokande

    Get PDF
    Recent results show that atmospheric νμ\nu_\mu oscillate with δm23×103\delta m^2 \simeq 3 \times 10^{-3} eV2^2 and sin22θatm1\sin^2{2\theta_{atm}} \simeq 1, and that conversion into νe\nu_e is strongly disfavored. The Super-Kamiokande (SK) collaboration, using a combination of three techniques, reports that their data favor νμντ\nu_\mu \to \nu_\tau over νμνsterile\nu_\mu \to \nu_{sterile}. This distinction is extremely important for both four-neutrino models and cosmology. We propose that neutrino-proton elastic scattering (ν+pν+p\nu + p \to \nu + p) in water \v{C}erenkov detectors can also distinguish between active and sterile oscillations. This was not previously recognized as a useful channel since only about 2% of struck protons are above the \v{C}erenkov threshold. Nevertheless, in the present SK data there should be about 40 identifiable events. We show that these events have unique particle identification characteristics, point in the direction of the incoming neutrinos, and correspond to a narrow range of neutrino energies (1-3 GeV, oscillating near the horizon). This channel will be particularly important in Hyper-Kamiokande, with 40\sim 40 times higher rate. Our results have other important applications. First, for a similarly small fraction of atmospheric neutrino quasielastic events, the proton is relativistic. This uniquely selects νμ\nu_\mu (not νˉμ\bar{\nu}_\mu) events, useful for understanding matter effects, and allows determination of the neutrino energy and direction, useful for the L/EL/E dependence of oscillations. Second, using accelerator neutrinos, both elastic and quasielastic events with relativistic protons can be seen in the K2K 1-kton near detector and MiniBooNE.Comment: 10 pages RevTeX, 8 figure

    Properties of Fermion Mixings in Intersecting D-brane Models

    Get PDF
    We consider the Yukawa couplings for quarks and leptons in the context of Pati-Salam model using intersecting D-brane models where the Yukawa coupling matrices are rank one in a simple choice of family replication. The CKM mixings can be explained by perturbing the rank 1 matrix using higher order terms involving new Higgs fields available in the model. We show that the near bi-large neutrino mixing angles can be naturally explained, choosing the light neutrino mass matrix to be type II seesaw dominant. The predicted value of U_{e3} is in the range \simeq 0.05-0.15. In the quark sector, V_{cb} is naturally close to the strange/bottom quark mass ratio and we obtain an approximate relation V_{ub} V_{cb} \simeq (m_s/m_b)^2 V_{us}. The geometrical interpretations of the neutrino mixings are also discussed.Comment: 17 pages, 3 figure

    Total neutrino and antineutrino nuclear cross sections around 1 GeV

    Get PDF
    We investigate neutrino-nucleus interactions at energies around 1 GeV. In this regime, the main contributions to the cross sections come from quasi-elastic and Δ\Delta production processes. Our formalism, based on the Impulse Approximation is well suited to describe both types of interactions. We focus on a series of important nuclear effects in the interaction of electron neutrinos with 16O^{16}O, also relevant to future β\beta-Beams. Our results show that the Fermi gas model, widely used in data analysis of neutrino experiments, overestimates the total cross sections by as much as 20 %.Comment: 30 pages, 15 figure
    corecore