9 research outputs found

    The HBM4EU chromates study – Outcomes and impacts on EU policies and occupational health practices

    Get PDF
    Funding Information: The recently completed EU human biomonitoring initiative (HBM4EU, www.hbm4eu.eu/about-hbm4eu/), was a European Joint Programme that aimed to harmonise the collection and use of biomonitoring data to better understand human exposure to chemicals in the environment, in occupational settings and through the use of consumer products to improve chemical risk assessment and management efforts, and to support policy making (Ganzleben et al., 2017). Within the context of the HBM4EU project several priority substances were selected for investigation based on the most important needs of policy makers and risk assessors, as well as common needs of participating countries and a broad range of other stakeholders including trade unions (Ougier et al., 2021). Many of the priority substances, along with having an important economic role, also pose health risks for workers due to their occupational use. One of the priority substances was hexavalent chromium (Cr(VI)), which was the main focus of the first of a series of three different HBM4EU occupational studies (Santonen et al. 2019a, 2022), the other two being focussed on electronic waste (E-waste) and diisocyanates exposures (Jones et al., 2022; Scheepers et al., 2021). In addition to Cr(VI), it was recognised that in chrome plating activities there may also be exposure to another group of HBM4EU priority chemicals, per- and polyfluoroalkyl substances (PFASs). PFASs, including PFOS (perfluorooctane sulfonate), have been used as mist suppressants in chrome plating baths to prevent the evaporation of Cr(VI) vapours (Blepp et al., 2017; Gluge et al., 2020). Although PFOS has now been largely replaced in the EU, many of its substitutes in chrome plating activities are also PFASs which may cause similar health and environmental concerns.Occupational exposure to Cr(VI) has been associated with an increased risk of lung and sinonasal cancers and is suspected to lead to gastrointestinal tract cancers (den Braver-Sewradj et al., 2021; ECHA 2013; IARC 2012). In addition, it is a common cause of occupational asthma, allergic dermatitis and there is a concern for adverse effects on reproductive health (Sun and Costa 2022). Exposure to Cr(VI) may occur in several occupational activities, e.g., in welding, Cr(VI) electroplating and other surface treatment processes such as paint application and removal of old paint containing Cr(VI) (SCOEL 2017). In order to limit the workers’ exposure to Cr(VI) in the EU, Cr(VI) is currently regulated under both the European regulation (EC 1907/2006) on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and the EU Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens, mutagens or reprotoxic substances at work (CMRD) (EU 2004). The current binding Occupational Exposure Limit (OEL) set under the EU Directive 2004/37/EC is 10 μg/m3 (8-h time-weighted average (8-h TWA)) until January 17, 2025. After that period, the OEL (8-h TWA) will be reduced to 5 μg/m3. For welding, plasma-cutting processes and similar work processes that generate fumes, there is a derogation with an OEL of 25 μg/m³ (8-h TWA) until January 2025; after that date the OEL (8-h TWA) of 5 μg/m3 will be applicable. France, the Netherlands and Denmark already have stricter limits, with an OEL of 1 μg/m3 (8-h TWA) for Cr(VI) in all uses (Beskæftigelsesministeriet 2020; Ministère du travail, 2012; MinSZW 2016). In the US, the American Conference of Governmental Industrial Hygienists (ACGIH) has published, for inhalable Cr(VI) compounds, a threshold limit value (TLV) of 0.2 μg/m3 (8-h TWA) and a TLV Short-Term Exposure Limit (STEL) of 0.5 μg/m3 (ACGIH 2021). No EU-wide biological limit values (BLVs) for Cr(VI) are available, however some Member States have set BLVs for occupational exposure to Cr(VI), measured as urinary chromium (U–Cr). For example, France and Finland have derived BLVs of 2.5 μg/L and 10 μg/L corresponding to their respective OELs of 1 μg/m3 and 5 μg/m3 for Cr(VI) (ANSES 2017; STM 2020). The German Research Foundation (DFG 2020) has established biological exposure equivalents for carcinogenic substances (EKA values), ranging from 12 to 40 μg/L for U–Cr. These correspond to exposures ranging between 30 and 100 μg/m3 soluble alkaline chromate and/or Cr(VI) containing welding fumes over an 8-h work shift (Bolt and Lewalter 2012). Since these current national BLVs are mainly based on studies from plating workers, they include uncertainties especially concerning their applicability to workplaces other than the electroplating industry. One of the main aims of the HBM4EU chromates study was to provide EU relevant data on the current occupational Cr(VI) exposure to support the regulatory risk assessment and decision-making process. In addition, exposure to PFASs was evaluated in a subset of workers performing chrome plating activities.This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 733032 and received co-funding from the author's organizations and/or Ministries. The project team would like to thank all the companies and workers who participated in the HBM4EU chromates study and all the experts who have contributed to the conduct of the study. Participants of the HBM4EU chromates study workshop and policy questionnaires are also acknowledged. Mr. Jouko Remes and Dr. Kia Gluschkoff (Finnish Institute of Occupational Health) are acknowledged for their assistance with the statistical analyses and figures. Funding Information: This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 733032 and received co-funding from the author's organizations and/or Ministries. Publisher Copyright: © 2022 The AuthorsWithin the EU human biomonitoring initiative (HBM4EU), a targeted, multi-national study on occupational exposure to hexavalent chromium (Cr(VI)) was performed. Cr(VI) is currently regulated in EU under REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) and under occupational safety and health (OSH) legislation. It has recently been subject to regulatory actions to improve its risk management in European workplaces. Analysis of the data obtained within the HBM4EU chromates study provides support both for the implementation of these regulatory actions and for national enforcement programs and may also contribute to the updating of occupational limit values (OELs) and biological limit values for Cr(VI). It also provides useful insights on the contribution of different risk management measures (RMMs) to further reduce the exposure to Cr(VI) and may support the evaluation of applications for authorisation under REACH. Findings on chrome platers’ additional per- and polyfluoroalkyl substances (PFAS) exposure highlight the need to also pay attention to this substance group in the metals sector. A survey performed to evaluate the policy relevance of the HBM4EU chromates study findings supports the usefulness of the study results. According to the responses received from the survey, the HBM4EU chromates study was able to demonstrate the added value of the human biomonitoring (HBM) approach in assessment and management of occupational exposure to Cr(VI). For future occupational studies, we emphasise the need for engagement of policy makers and regulators throughout the whole research process to ensure awareness, relevance and uptake of the results in future policies.publishersversionepub_ahead_of_prin

    Izloženost genotoksičnim agensima iz životnog okoliša tijekom prenatalnog razvoja i djetinjstva

    Get PDF
    Health disorders and diseases related to environmental exposure in children such as cancer and immunologic disturbances (asthma, allergies) are on the rise. However, complex transplacental and prepubertal genotoxicology is given very limited consideration, even though intrauterine development and early childhood may be critical for elucidating the cancer aetiology. The foetus is transplacentally exposed to contaminants in food and environment such as various chemicals, drugs, radiochemically contaminated water and air. Target organs of xenobiotic action may differ between the mother and the foetus due to specific stage of developmental physiology and enzyme distribution. This in turn may lead to different levels of clastogenic and aneugenic metabolites of the same xenobiotic in the mother and the foetus. Adult’s protective behaviour is not sufficient to isolate children from radioisotopes, pesticides, toxic metals and metalloids, environmental tobacco smoke, endocrine disrupting chemicals, and various food contaminants, which are just a part of the stressors present in a polluted environment. In order to improve legislation related to foetus and child exposure to genotoxic and possibly carcinogenic agents, oncologists, paediatricians, environmental health specialists, and genotoxicologists should work together much more closely to make a more effective use of accumulated scientific data, with the final aim to lower cancer incidence and mortality.Unatoč velikim naporima da se smanji okolišna izloženost u djece se dalje bilježi trend porasta pojavnosti karcinoma i imunosnih poremećaja (astma, alergije). Premda su intrauterini razvoj i rano djetinjstvo kritično razdoblje za tumačenje etiologije nastanka karcinoma, transplacentalna i prepubertetna genotoksikologija do danas su slabo istražene. Fetus je transplacentalno izložen brojnim fizikalnim i kemijskim čimbenicima: kontaminantima iz hrane i okoliša, radiokemijski kontaminiranoj vodi, zraku te lijekovima. Ciljna tkiva za djelovanje ksenobiotika mogu biti različita u majke i fetusa zbog različitosti u razvojnoj fiziologiji i distribuciji enzima. Zbog toga u organizmu majke i fetusa mogu nastati različite razine klastogenih i aneugenih metabolita istog ksenobiotika. Zaštitna uloga odraslih u namjeri da spriječe negativne utjecaje onečišćenog okoliša na djetetovo zdravlje često je ograničena jer su radioizotopi, olovo, PCB, pasivno pušenje, živa, endokrino aktivne tvari, pesticidi i kontaminanti prisutni u svim životnim područjima tijekom razvoja i rasta djeteta. Kako bi se poboljšalo zakonodavstvo vezano uz izloženost djece genotoksičnim i vjerojatno kancerogenim tvarima, tijekom razvoja potrebna je bolja suradnja onkologa, pedijatara, stručnjaka zdravstvene ekologije i genotoksikologa. Na taj način ostvarilo bi se uspješnije iskorištavanje postojećih znanstvenih podataka u cilju smanjenja incidencije karcinoma i mortaliteta

    Newborns health in the Danube Region: environment, biomonitoring, interventions and economic benefits in a large prospective mother-child cohort study

    No full text
    Background: The EU strategy for the Danube Region addresses numerous challenges including environment, health and socioeconomic disparities. Many old environmental burdens and heavily polluted areas in Europe are located in the Danube Region, consisting of 14 countries, with over 100 million people. Estimating the burden of environmental exposures on early-life health is a growing research area in Europe which has major public health implications, but the data from the Danube Region are largely missing. Aim: This review presents an inventory of current environmental challenges, related early-life health risks, and knowledge gaps in the Danube Region, based on publicly available databases, registers, and literature, as a rationale and incentive for a new integrated project. The review also proposes the concept for the project aiming to characterize in utero exposures to multiple environmental factors and estimate their effect on early-life health, evaluate economic impact, as well as identify interventions with a potential to change emissions and exposures in the Danube Region. Methods: Experts in environmental epidemiology, human biomonitoring and social science in collaboration with clinicians propose to establish a new large multi-centre birth cohort of motherchild pairs from Danube countries, measure biomarkers of exposure and health in biological samples at birth, collect centrally measured climate, air and water pollution data, conduct pre- and postnatal surveys on lifestyle, indoor exposures, noise, occupation, socio-economic status, riskaverting behaviour, and preferences; and undertake clinical examinations of children at and after birth. Novel biomarkers of exposure, susceptibility, and effect will be applied, to gain better mechanistic insight. Effects of multiple environmental exposures on fetal and child growth, respiratory, allergic, immunologic, and neurodevelopmental health outcomes will be estimated. Parent’s willingness to pay for reducing health risks in children will be elicited by survey, while values of cost-of-illness will be gathered from literature and national stitstics. Effects of risk reducing interventions will be examined. Conclusions: The proposed project would provide novel estimates of the burden of early childhood diseases attributable to environmental exposures and assess health impacts of different intervention scenarios in the Danube Region, in an integrated approach combining human biomonitoring, epidemiological and social science research.JRC.I.1-Chemical Assessment and Testin

    Policy recommendations and cost implications for a more sustainable framework for European human biomonitoring surveys

    No full text
    © 2014 Elsevier Inc. All rights reserved.The potential of Human Biomonitoring (HBM) in exposure characterisation and risk assessment is well established in the scientific HBM community and regulatory arena by many publications. The European Environment and Health Strategy as well as the Environment and Health Action Plan 2004-2010 of the European Commission recognised the value of HBM and the relevance and importance of coordination of HBM programmes in Europe. Based on existing and planned HBM projects and programmes of work and capabilities in Europe the Seventh Framework Programme (FP 7) funded COPHES (COnsortium to Perform Human Biomonitoring on a European Scale) to advance and improve comparability of HBM data across Europe. The pilot study protocol was tested in 17 European countries in the DEMOCOPHES feasibility study (DEMOnstration of a study to COordinate and Perform Human biomonitoring on a European Scale) cofunded (50%) under the LIFE+ programme of the European Commission. The potential of HBM in supporting and evaluating policy making (including e.g. REACH) and in awareness raising on environmental health, should significantly advance the process towards a fully operational, continuous, sustainable and scientifically based EU HBM programme. From a number of stakeholder activities during the past 10 years and the national engagement, a framework for sustainable HBM structure in Europe is recommended involving national institutions within environment, health and food as well as European institutions such as ECHA, EEA, and EFSA. An economic frame with shared cost implications for national and European institutions is suggested benefitting from the capacity building set up by COPHES/DEMOCOPHES.COPHES was coordinated by BiPRO GmbH, Germany, with the University of Leuven, Belgium and was funded by DG Research in the Seventh Framework Programme (FP7/2007-2013). DEMOCOPHES (LIFE09 ENV/BE/000410) was coordinated by the Federal Public Service Health, Food Chain Safety and Environment, Belgium and was jointly financed by the European Commission LIFE┼ programme (50%) and national institutions in each participating country

    Policy recommendations and cost implications for a more sustainable framework for European human biomonitoring surveys

    No full text
    The potential of Human Biomonitoring (HBM) in exposure characterisation and risk assessment is well established in the scientific HBM community and regulatory arena by many publications. The European Environment and Health Strategy as well as the Environment and Health Action Plan 2004–2010 of the European Commission recognised the value of HBM and the relevance and importance of coordination of HBM programmes in Europe. Based on existing and planned HBM projects and programmes of work and capabilities in Europe the Seventh Framework Programme (FP 7) funded COPHES (COnsortium to Perform Human Biomonitoring on a European Scale) to advance and improve comparability of HBM data across Europe. The pilot study protocol was tested in 17 European countries in the DEMOCOPHES feasibility study (DEMOnstration of a study to COordinate and Perform Human biomonitoring on a European Scale) cofunded (50%) under the LIFE+ programme of the European Commission. The potential of HBM in supporting and evaluating policy making (including e.g. REACH) and in awareness raising on environmental health, should significantly advance the process towards a fully operational, continuous, sustainable and scientifically based EU HBM programme. From a number of stakeholder activities during the past 10 years and the national engagement, a framework for sustainable HBM structure in Europe is recommended involving national institutions within environment, health and food as well as European institutions such as ECHA, EEA, and EFSA. An economic frame with shared cost implications for national and European institutions is suggested benefitting from the capacity building set up by COPHES/DEMOCOPHESAplinkotyros katedraVytauto Didžiojo universiteta

    Policy recommendations and cost implications for a more sustainable framework for European human biomonitoring surveys

    No full text
    corecore