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Health disorders and diseases related to environmental exposure in children such as cancer and immunologic 
disturbances (asthma, allergies) are on the rise. However, complex transplacental and prepubertal 
genotoxicology is given very limited consideration, even though intrauterine development and early 
childhood may be critical for elucidating the cancer aetiology. The foetus is transplacentally exposed to 
contaminants in food and environment such as various chemicals, drugs, radiochemically contaminated 
water and air. Target organs of xenobiotic action may differ between the mother and the foetus due to 
specifi c stage of developmental physiology and enzyme distribution. This in turn may lead to different 
levels of clastogenic and aneugenic metabolites of the same xenobiotic in the mother and the foetus. 
Adult’s protective behaviour is not suffi cient to isolate children from radioisotopes, pesticides, toxic 
metals and metalloids, environmental tobacco smoke, endocrine disrupting chemicals, and various food 
contaminants, which are just a part of the stressors present in a polluted environment. In order to improve 
legislation related to foetus and child exposure to genotoxic and possibly carcinogenic agents, oncologists, 
paediatricians, environmental health specialists, and genotoxicologists should work together much more 
closely to make a more effective use of accumulated scientifi c data, with the fi nal aim to lower cancer 
incidence and mortality.
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Health disorders and diseases related to 
environmental exposure in children such as cancer 
and immunologic disturbances (asthma, allergy) 
are on a constant rise (1-3). The increased risk of 
cancer could be the result of in utero and early life 
exposure (4). Carcinogenesis could start during the 
specifi cally vulnerable period of foetal development 
as a consequence of maternal exposure to food and 
environmental mixture of pollutants (5, 6). The 
complex interaction between the environment and a 
living organism is modifi ed by processes of growth, 
development, adaptation, and aging. Challenges to 
developmental homeostasis may burden adulthood 

with different health risks and deviations in processes 
of ageing. Radiation and chemical carcinogens can 
damage the genome through direct interaction with 
DNA, formation of free radicals, disturbances of 
lipid peroxidation, and hypomethylation (7-9). As it 
seems that almost all cancers are oestrogen-related, 
evaluation of carcinogens demands a new approach 
(10-12). Oestrogen-like activity has been described 
for known or suspected genotoxic agents such as 
metals, heterocyclic amines, some pesticides, and 
dioxins (13-16). Cotinine (a nicotine metabolite) and 
some fungicides are, in contrary, aromatase inhibitors 
(17, 18). Oestrogen also has a signifi cant role in 
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organogenesis and in maturation during the pubertal 
period (19). In addition, hormone levels can cause 
specifi c radiochemical sensitivity (20).

Genome damage in the foetus is a result of a 
complex interaction between maternal and foetal 
metabolism, development stage of the foetus, 
pregnancy-related bioaccumulation of metabolites and 
detoxifi cation capacity of the foetus and the mother 
(including endometrium) (21). Interaction between 
the xenobiotics and their metabolites even at low 
doses may be synergistic and long-term. Furthermore, 
production of clastogenic or aneugenic metabolites 
of the same xenobiotic can differ between the fi rst 
and the third trimester of pregnancy. Drugs like 
paracetamol, 5-nitrofurantoin, or fl uconazole, which 
are frequently prescribed in paediatric practice, are 
potential transplacental and postnatal genotoxicants as 
is found in the latest investigations in young animals 
(22, 23).

Human population, is exposed to hazardous 
biological and chemical agents through air, water, 
or food (Figure 1). The foetus is exposed to 
(radio)chemical genotoxicants from the occupational 
and living environment of the mother and father and 
for children it is water, air at home and school (indoor), 
urban or rural open air microenvironment and food. 
The effects of exposure to lead, polychlorinated 
biphenyls (PCBs), radioisotopes, environmental 
tobacco smoke, mercury, endocrine disrupters, 

pesticides, and food contaminants are often combined 
with drugs (including recreational ones) and stress at 
school, in the family (such as divorce) or society (such 
as war), infection and malnutrition.

All too often environmental risks are recognised 
when it is too late, that is, through epidemiological 
studies, when health consequences are already there. 
Genotoxicological methods in properly modelled 
studies, can identify genome damage and health 
risk before the fi rst clinical symptoms. The most 
informative result is produced by measuring the fi nal 
biological effect, which summarises all synergistic and 
antagonistic mechanisms of xenobiotics. Molecular 
epidemiology uses biomarkers that can measure the 
concentration of xenobiotics and their metabolites 
(biomarkers of exposure), individual’s susceptibility 
(biomarkers of susceptibility), and early biological 
effects through molecular and cellular changes 
(biomarkers of effect). These biomarkers of effect 
include chromosome abberation (CA), micronuclei 
(MN), and sister chromatid exchange (SCE), which 
are used in biomonitoring. CA and MN correlate with 
increased cancer risk (24, 25). Another valuable tool, 
the comet assay, has been used to measure genotoxic 
effects and individual susceptibility in humans. 
Despite its advantages such as great sensitivity and 
small sample size required, the comet assay has not 
yet been standardised with a protocol and a quality 
control programme (26, 27).

Figure 1 Children’s exposure to physical and chemical agents and applied biomarkers of susceptibility, exposure, and effect
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Infants and children are generally omitted from 
large-scale biomonitoring studies because of ethical 
reasons. Literature search showed that applied 
genotoxicological methods are sensitive to genome 
damage in children caused by xenobiotics like those 
from environmental tobacco smoke and air pollution 
(28, 29). In a meta-analysis by Neri et al. (28), CA and 
MN were increased in children exposed to industrial 
pollutants, chemical waste, polluted water, indoor 
radon, and environmental tobacco smoke. Although 
used in only a few studies, SCE also deviated from 
control values in children who lived downwind of a 
chemical disposal site (30). Several studies of child 
exposure to chemical agents used the following 
biomarkers: DNA, haemoglobin and protein adducts, 
comet assay, and gene mutation assay (31-35). 
They suggest specifi c susceptibility of the foetus 
and child and call for further search for the most 
sensitive methods for certain types of environmental 
(radio)chemicals (30, 36).

This paper gives an overview of child exposure 
to genotoxicants in food, drugs, water, air, including 
ionising, and non-ionizing radiation.

FOOD

Genotoxic agents are detectable in food at levels 
which vary depending on the type of food and 
preparation method. For instance, baking and broiling 
causes formation of acrylamide, heterocyclic amines, 
and benzo(a)pyrene at different levels (37-39). 
However, contrary to professional and environmental 
exposure where one can have only small infl uence, 
nutrition although defi ned by socioeconomic and 
demographic status, can be improved. Changes in 
dietary habits, size of meal, and cooking method can 
also reduce intake of contaminants. Recommendations 
for optimal and balanced diet are of particular 
importance for pregnant women in order to reduce 
foetal exposure. Deficiency in micronutrients 
(minerals, vitamins) in maternal nutrition could 
cause adverse health effects on foetal development 
(40, 41). So far there is not much scientifi c evidence 
confi rming newborn genome damage due to maternal 
exposure to genotoxic chemicals present in food 
during pregnancy. Ross et al. report increased risk of 
infant leukaemia if the mother is exposed to drugs or 
natural substances in food that are inhibiting DNA 
topoisomerase II (42). One of the most investigated 

dietary transplacental toxicants in humans is ethanol 
(EtOH). Metabolised with higher efficiency in 
mothers, EtOH may cause severe biological effects 
in the foetus due to low foetal clearance capacity 
(43). Chronic exposure to afl atoxin, a mycotoxin 
present in food, may have carcinogenic effects (44). 
Lipoxygenase activity caused by afl atoxin B-1 is 
signifi cantly higher in prenatal than in adult liver 
tissue, while detoxifi cation by epoxide hydrolase is 
half as effective as in adults (45).

Prenatal exposure to PCBs could adversely affect 
child’s neurological and cognitive development 
(46). Karttunnen et al. (47) have shown that 
maternal exposure to benzo(a)pyrene can lead to 
placental biotransformation which produces reactive 
metabolites able to form stable BaP-DNA adducts 
in foetus. Maternal high fi sh consumption during 
pregnancy could lead to prenatal mercury and 
methylmercury exposure leading to foetal death or 
neurodevelopmental delays (48). However, there are 
no data on heavy-metal-related genome damage and 
health risk in newborns or on any late genotoxic effects 
during childhood.

DRUGS

Developmental toxicants became an issue in the 
1960s when the use of thalidomide was shown to 
have deleterious effects on the foetus development 
(49). Since then, a number of medications have been 
prescribed during pregnancy but less than 10 % of 
drugs have been investigated for teratogenic effects 
(50). Studies have shown that the placental barrier 
is permeable to drugs and their metabolites (51), but 
there are few of them investigating and evidencing 
genome damage in newborns. We have recently 
reported new in vivo fi ndings of MN induction in 
newborns of mothers taking antiepileptic drugs during 
pregnancy (52). Witt et al. (53) reported a tenfold 
increase in micronucleated reticulocyte frequency in 
infants exposed to antiretroviral therapy in utero.

WATER

The usual genotoxicants in water are nitrate, 
arsenic, nickel, cadmium, and asbestos (54) and 
children exposed to them have shown genome 
damage (55, 56). Unlike tap water, bottled water 
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originating from ground water can contain 226Ra, 
228Ra, 210Pb, and 210Po17 and display various levels of 
radioactivity (57). Its consumption has increased in 
order to avoid chemical contaminants in tap water, 
but also due to changes in eating habits and lifestyle. 
Several studies of bottled water samples in Europe 
have found beta radioactivity going up to 4.6 Bq L-1 
and alfa radioactivity up to 1.75 Bq L-1, which is well 
above the reference limits (1.0 Bq L-1 and 0.1 Bq L-1, 
respectively) (59-60). World Health Organization 
(WHO) (61) recommends that the annual effective 
dose from water consumption does not exceed 5 % 
of the average effective dose from natural sources 
(2.4 mSv), that is, 0.1 mSv. As radon follows the 
metabolic pathway of calcium, its incorporation into a 
child’ skeleton poses a signifi cant health risk (62). Due 
to age-dependent development of the gastrointestinal 
system in children, the highest absorption of radon 
is in newborns and children between 13 and 17 
years of age (63, 64). In addition, newborns and 
children seem to drink more water than adults (65). 
Undernourished infants may receive doses of up to 
0.28 mSv year-1 if their diet is exclusively prepared 
with mineral water with elevated radon concentrations. 
According to Bronzović et al. (66) 226Ra body activity 
is significantly higher in people exposed to high 
doses during childhood than those exposed at adult 
age. Accumulation of radon in bones during puberty 
may be related to specific hormonal activity of 
testosterone and oestrogen (67). The mechanism of 
90Sr bioaccumulation in the bone is similar to 226Ra, 
but according to Tolstykh et al. (68) its bone affi nity 
is even greater, as shown in a population overexposed 
to 90Sr near the Mayak plutonium production complex 
in Russia. These authors fi nd that the most critical 
period for girls is just before menarche and for boys 
2 to 3 years before the formation of the secondary sex 
features. Consequently, adults who were exposed to 
90Sr during the childhood have a signifi cantly higher 
frequency of traslocations than young adults exposed 
at the age of 20 years or older (69).

In summary, water involves exposure to a complex 
mixture of radiochemicals. To understand their 
mechanisms of action one needs to be aware of several 
pathways including knowledge on specifi c early age 
or later hormonal level related bioaccumulation.

AIR

Children spend most of their time at home 
or at (pre)school, where they may be exposed to 

formaldehyde. This can lead to higher CA frequency 
(70, 71). Exposure to secondary tobacco smoke 
leads to deviations in all genotoxic biomarkers from 
control values for all age groups, from newborns to 
adolescents (28, 72). Hansen et al. (73) have shown 
that carcinogens from tobacco smoke pass through 
the placenta to foetal tissues and metabolise to DNA-
damaging agents. They have also found that newborns 
of mothers who smoked and drank alcohol during 
pregnancy had higher translocation frequencies. 
Cadmium, lead, and arsenic, from tobacco smoke 
have 10 times higher absorption than from food or 
water (74). In a study by Godschalk et al. (75), foetal 
exposure to heavy metals such as cadmium correlated 
positively with the number of HPRT-variants per 
adduct in cord blood. The authors suggest that by 
inhibiting DNA repair, cadmium may enhance the 
genotoxic effect of other carcinogens.

Radon gas is the second leading cause of lung 
cancer after smoking. Apart from background radon 
radiation, indoor exposure is usually related to 
natural radioactivity from fl y ash, alum shale, and 
phosphogypsum used in building materials (76). 
Stoulos et al, found increased MN and CA frequency 
in children exposed to high levels of indoor radon 
(77).

Exposure to outdoor airborne pollutants, including 
chemicals from suburban smelters or residential 
heating systems can cause genome damage in children 
(78-80). Pedersen et al. (81) found that maternal 
exposure to traffic-related air pollution in urban 
environment resulted in increased bulky DNA adducts 
and MN frequency in cord blood (81). A life close 
to mining sites may be the source of severe genome 
damage in children caused by arsenic or lead (82) but it 
may also be contaminated by radioisotopes especially 
if mines are followed by the nucleo-chemical industry 
(83).

IONISING RADIATION

Most of the data available on children’s genome 
damage caused by ionising radiation are related to 
accidental overexposure in Chernobyl (Ukraine), the 
Techa River (Russia), and Goiânia (Brasil) or are 
related to medical therapy (28,29). Although pregnant 
women are usually isolated from jobs which could 
jeopardise normal development of the foetus, the fi rst 
trimester of pregnancy can go unnoticed, and the foetus 
may be exposed to increased risk. In hospitals where 
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women are occupationally exposed to radioisotopes 
(iodine, chromium, thallium, technetium, thorium) 
the miscarriage incidence is signifi cantly higher than 
in women occupationally exposed to X-rays (36). It 
seems that health effects of radioisotopes applied in 
diagnostics are not limited to their own radioactivity 
but may also be owed to contamination with lead, tin, 
or nickel due to the technology of production, which 
act as heavy metals or xenoestrogens (36).

Epidemiological studies of parental exposure 
to ionising radiation and cancer risk in children 
have been limited to post-Chernobyl accident 
biomonitoring of the so called liquidators, who were 
removing radioactive material and of the Chernobyl 
plant workers (84, 85). The health effects of nuclear 
power plants on nearby residents have not duly been 
investigated; this is particularly true for genome 
damage in children. Epidemiological studies showing 
clusters of leukaemia in these areas still need to be 
confi rmed (86-89). Available studies are focused on 
childhood leukaemia cases in the population living 
in an area of about 5 km around nuclear plants. 
These studies suggest that beside the health risk of 
children whose father work at nuclear plants (90), 
signifi cant increase in leukaemia cases is also present 
in the general population (91, 92). Another source 
of ionising radiation are diagnostic and treatment 
procedures in medicine (93). Kleinerman (94) found 
that child exposure to radiation sources used for 
diagnostic imaging increased the risk of cancer and 
was greatest for those exposed early in life (94). 
Doodly et al. (95) reported increased risk of breast 
cancer among women with scoliosis after multiple 
diagnostic X-ray examinations during childhood and 
adolescence (95).

NON-IONISING RADIATION

Human exposure to radiofrequency (RF) non-
ionising radiation has increased over the last decade as 
a result of increased use of mobile phones, especially in 
children and adolescents (96). Epidemiological studies 
in animals and humans have revealed neurological 
and behavioural effects of RF radiation exposure 
(97, 98). However, cancer risk assessments have 
remained inconclusive, and there is only one study 
with strong scientifi c evidence of association between 
RF radiation from cell phones and wireless devices 
and the development of acoustic neuroma and glioma, 
especially in people who started using mobile phones 

before the age of 20 years (99). Another multi-national 
case-control study (the Interphone study, 100), fi nd no 
association between RF exposure from mobile phones 
and cancer risk. According to Shüz (101), newborns 
and children are more susceptible than adults since 
their nervous system is still developing. In addition, 
they will have much higher cumulative exposure 
than today’s adults and the potential long-term health 
effects are still unknown. Therefore, current legislation 
should be based on the precautionary principle.

CONCLUSIONS AND 
RECOMMENDATIONS

Developmental characteristics of children as a 
response to their living environment are specific 
bioaccumulation, absorption, distribution, foetal and 
transitional perinatal metabolic and detoxifi cation 
enzymes and kidney clearance (102). Adult values for 
glomerular fi ltration rate, maximum tubular excretory 
capacity, and maximum renal concentrating capacity 
are achieved by the age of 2 years. Foetuses and 
newborns up to 3 months of age have signifi cantly 
different cytochrome P450 levels than adults, which 
results in different circulatory half-life for a number of 
substances (103). Therefore, paediatric pharmacology 
could help to better understand the mechanisms of 
action of environmental genotoxicants and to better 
assess the related risks (104). Similarly, knowledge 
of metabolic kinetic and chemical structure of 
environmental xenobiotics, can be used in research 
of new drugs. 

Specific research is needed to investigate 
environmental impact mediated by complex hormonal 
changes during puberty. The interaction between 
PCBs, dibenzodioxins, phyto-oestrogens, cadmium 
or DDT and endogenous hormones (105, 106) has 
to be further investigated because of their potential 
to sensitise mechanisms leading to increased 
genome damage by other genotoxic agents from the 
environment (107).

In transplacental studies, knowledge of metabolism 
during intrauterine development should be incorporated 
in interpretation of results, as the same xenobiotics 
may cause different levels of genome damage in 
different foetal tissues through time.

Future research demands: pharmacokinetic studies 
across different developmental stages, molecular 
characterisation of target-binding sites, and better 
understanding of the synthesis and activation of 
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nuclear proteins (transcription factors), nucleotide 
pool disturbances, and impact of lipid peroxidase 
products (4-hydroxynonenal and malondialdehyde).

Over the last few decades, genotoxicology and 
developmental genotoxicology have been limited to 
frozen time segment insights into the mechanisms 
that lead to genome damage. Introduction of systems 
biology, a new fi eld which develops a system-level 
understanding of biology (108) enables analysis 
of dynamics of the systems, optimal frame for 
interpretation of collected data on the interaction 
between environment and known developmental 
mechanisms. Recent advances have demonstrated 
that molecular regulatory networks can be modelled 
in mathematical terms. Such approach will prevent 
hundreds of genotoxicological results and especially 
results from gene and protein arrays to serve simply 
as a catalogue of change (109).

Induction of bystander effect, adaptive response 
and genome instability after xenbiotic exposure can 
have negative effects on the complexity of foetal 
development causing imbalance in gene expression 
(110). This is why future research should investigate 
adaptive response and its relation to interindividual 
variability in response to xenobiotics, genome 
instability, and sensitivity to radiation or chemicals.

Future research should also focus on mechanisms 
by which hormonal disruptors increase oestrogen, 
which in turn (111) may interact with radiation and 
increase cancer risk (112).

Close collaboration of occupational and 
environmental health specialists with paediatricians, 
genotoxcologists and oncologists can signifi cantly 
improve the quality and applicability of available 
knowledge. Dataset gridding of these four fi elds could 
incorporate all aspects of life, from foetal development 
to parental working environment, and make it possible 
to evaluate cancer risk for each individual.
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Sažetak

IZLOŽENOST GENOTOKSIČNIM AGENSIMA IZ ŽIVOTNOG OKOLIŠA TIJEKOM PRENATALNOG 
RAZVOJA I DJETINJSTVA

Unatoč velikim naporima da se smanji okolišna izloženost u djece se dalje bilježi trend porasta pojavnosti 
karcinoma i imunosnih poremećaja (astma, alergije). Premda su intrauterini razvoj i rano djetinjstvo kritično 
razdoblje za tumačenje etiologije nastanka karcinoma, transplacentalna i prepubertetna genotoksikologija 
do danas su slabo istražene. Fetus je transplacentalno izložen brojnim fi zikalnim i kemijskim čimbenicima: 
kontaminantima iz hrane i okoliša, radiokemijski kontaminiranoj vodi, zraku te lijekovima. Ciljna tkiva 
za djelovanje ksenobiotika mogu biti različita u majke i fetusa zbog različitosti u razvojnoj fi ziologiji 
i distribuciji enzima. Zbog toga u organizmu majke i fetusa mogu nastati različite razine klastogenih i 
aneugenih metabolita istog ksenobiotika.
Zaštitna uloga odraslih u namjeri da spriječe negativne utjecaje onečišćenog okoliša na djetetovo zdravlje 
često je ograničena jer su radioizotopi, olovo, PCB, pasivno pušenje, živa, endokrino aktivne tvari, pesticidi 
i kontaminanti prisutni u svim životnim područjima tijekom razvoja i rasta djeteta. Kako bi se poboljšalo 
zakonodavstvo vezano uz izloženost djece genotoksičnim i vjerojatno kancerogenim tvarima, tijekom 
razvoja potrebna je bolja suradnja onkologa, pedijatara, stručnjaka zdravstvene ekologije i genotoksikologa. 
Na taj način ostvarilo bi se uspješnije iskorištavanje postojećih znanstvenih podataka u cilju smanjenja 
incidencije karcinoma i mortaliteta.

KLJUČNE RIJEČI: genotoksikologija djece, ksenobiotik, okolišna izloženost, oštećenje genoma, 
transplacentalna genotoksikologija
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