128 research outputs found
APOE ?4 status is associated with white matter hyperintensities volume accumulation rate independent of AD diagnosis.
To assess the relationship between carriage of APOE ?4 allele and evolution of white matter hyperintensities (WMHs) volume, we longitudinally studied 339 subjects from the Alzheimer's Disease Neuroimaging Initiative cohort with diagnoses ranging from normal controls to probable Alzheimer's disease (AD). A purpose-built longitudinal automatic method was used to segment WMH using constraints derived from an atlas-based model selection applied to a time-averaged image. Linear mixed models were used to evaluate the differences in rate of change across diagnosis and genetic groups. After adjustment for covariates (age, sex, and total intracranial volume), homozygous APOE ?4?4 subjects had a significantly higher rate of WMH accumulation (22.5% per year 95% CI [14.4, 31.2] for a standardized population having typical values of covariates) compared with the heterozygous (?4?3) subjects (10.0% per year [6.7, 13.4]) and homozygous ?3?3 (6.6% per year [4.1, 9.3]) subjects. Rates of accumulation increased with diagnostic severity; controls accumulated 5.8% per year 95% CI: [2.2, 9.6] for the standardized population, early mild cognitive impairment 6.6% per year [3.9, 9.4], late mild cognitive impairment 12.5% per year [8.2, 17.0] and AD subjects 14.7% per year [6.0, 24.0]. Following adjustment for APOE status, these differences became nonstatistically significant suggesting that APOE ?4 genotype is the major driver of accumulation of WMH volume rather than diagnosis of AD
CSF amyloid is a consistent predictor of white matter hyperintensities across the disease course from aging to Alzheimer's disease.
This study investigated the relationship between white matter hyperintensities (WMH) and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers. Subjects included 180 controls, 107 individuals with a significant memory concern, 320 individuals with early mild cognitive impairment, 171 individuals with late mild cognitive impairment, and 151 individuals with AD, with 3T MRI and CSF Aβ1-42, total tau (t-tau), and phosphorylated tau (p-tau) data. Multiple linear regression models assessed the relationship between WMH and CSF Aβ1-42, t-tau, and p-tau. Directionally, a higher WMH burden was associated with lower CSF Aβ1-42 within each diagnostic group, with no evidence for a difference in the slope of the association across diagnostic groups (p = 0.4). Pooling all participants, this association was statistically significant after adjustment for t-tau, p-tau, age, diagnostic group, and APOE-ε4 status (p < 0.001). Age was the strongest predictor of WMH (partial R2~16%) compared with CSF Aβ1-42 (partial R2~5%). There was no evidence for an association with WMH and either t-tau or p-tau. These data are supportive of a link between amyloid burden and presumed vascular pathology
Prostate Cancer Risk by BRCA2 Genomic Regions.
A BRCA2 prostate cancer cluster region (PCCR) was recently proposed (c.7914 to 3') wherein pathogenic variants (PVs) are associated with higher prostate cancer (PCa) risk than PVs elsewhere in the BRCA2 gene. Using a prospective cohort study of 447 male BRCA2 PV carriers recruited in the UK and Ireland from 1998 to 2016, we estimated standardised incidence ratios (SIRs) compared with population incidences and assessed variation in risk by PV location. Carriers of PVs in the PCCR had a PCa SIR of 8.33 (95% confidence interval [CI] 4.46-15.6) and were at a higher risk of PCa than carriers of other BRCA2 PVs (SIR = 3.31, 95% CI 1.97-5.57; hazard ratio = 2.34, 95% CI 1.09-5.03). PCCR PV carriers had an estimated cumulative PCa risk of 44% (95% CI 23-72%) by the age of 75 yr and 78% (95% CI 54-94%) by the age of 85 yr. Our results corroborate the existence of a PCCR in BRCA2 in a prospective cohort. PATIENT SUMMARY: In this report, we investigated whether the risk of prostate cancer for men with a harmful mutation in the BRCA2 gene differs based on where in the gene the mutation is located. We found that men with mutations in one region of BRCA2 had a higher risk of prostate cancer than men with mutations elsewhere in the gene
Risks of breast or ovarian cancer in BRCA1 or BRCA2 predictive test negatives: findings from the EMBRACE study.
Purpose
BRCA1/BRCA2 predictive test negatives are proven noncarriers of a BRCA1/BRCA2 mutation that is carried by their relatives. The risk of developing breast cancer (BC) or epithelial ovarian cancer (EOC) in these women is uncertain. The study aimed to estimate risks of invasive BC and EOC in a large cohort of BRCA1/BRCA2 predictive test negatives.
Methods
We used cohort analysis to estimate incidences, cumulative risks, and standardized incidence ratios (SIRs).
Results
A total of 1,895 unaffected women were eligible for inclusion in the BC risk analysis and 1,736 in the EOC risk analysis. There were 23 incident invasive BCs and 2 EOCs. The cumulative risk of invasive BC was 9.4% (95% confidence interval (CI) 5.9-15%) by age 85 years and the corresponding risk of EOC was 0.6% (95% CI 0.2-2.6%). The SIR for invasive BC was 0.93 (95% CI 0.62-1.40) in the overall cohort, 0.85 (95% CI 0.48-1.50) in noncarriers from BRCA1 families, and 1.03 (95% CI 0.57-1.87) in noncarriers from BRCA2 families. The SIR for EOC was 0.79 (95% CI 0.20-3.17) in the overall cohort.
Conclusion
Our results did not provide evidence for elevated risks of invasive BC or EOC in BRCA1/BRCA2 predictive test negatives.
Genetics in Medicine advance online publication, 22 March 2018; doi:10.1038/gim.2018.44
Prostate Cancer Risks for Male BRCA1 and BRCA2 Mutation Carriers: A Prospective Cohort Study.
BACKGROUND: BRCA1 and BRCA2 mutations have been associated with prostate cancer (PCa) risk but a wide range of risk estimates have been reported that are based on retrospective studies. OBJECTIVE: To estimate relative and absolute PCa risks associated with BRCA1/2 mutations and to assess risk modification by age, family history, and mutation location. DESIGN, SETTING, AND PARTICIPANTS: This was a prospective cohort study of male BRCA1 (n = 376) and BRCA2 carriers (n = 447) identified in clinical genetics centres in the UK and Ireland (median follow-up 5.9 and 5.3 yr, respectively). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Standardised incidence/mortality ratios (SIRs/SMRs) relative to population incidences or mortality rates, absolute risks, and hazard ratios (HRs) were estimated using cohort and survival analysis methods. RESULTS AND LIMITATIONS: Sixteen BRCA1 and 26 BRCA2 carriers were diagnosed with PCa during follow-up. BRCA2 carriers had an SIR of 4.45 (95% confidence interval [CI] 2.99-6.61) and absolute PCa risk of 27% (95% CI 17-41%) and 60% (95% CI 43-78%) by ages 75 and 85 yr, respectively. For BRCA1 carriers, the overall SIR was 2.35 (95% CI 1.43-3.88); the corresponding SIR at age <65 yr was 3.57 (95% CI 1.68-7.58). However, the BRCA1 SIR varied between 0.74 and 2.83 in sensitivity analyses to assess potential screening effects. PCa risk for BRCA2 carriers increased with family history (HR per affected relative 1.68, 95% CI 0.99-2.85). BRCA2 mutations in the region bounded by positions c.2831 and c.6401 were associated with an SIR of 2.46 (95% CI 1.07-5.64) compared to population incidences, corresponding to lower PCa risk (HR 0.37, 95% CI 0.14-0.96) than for mutations outside the region. BRCA2 carriers had a stronger association with Gleason score ≥7 (SIR 5.07, 95% CI 3.20-8.02) than Gleason score ≤6 PCa (SIR 3.03, 95% CI 1.24-7.44), and a higher risk of death from PCa (SMR 3.85, 95% CI 1.44-10.3). Limitations include potential screening effects for these known mutation carriers; however, the BRCA2 results were robust to multiple sensitivity analyses. CONCLUSIONS: The results substantiate PCa risk patterns indicated by retrospective analyses for BRCA2 carriers, including further evidence of association with aggressive PCa, and give some support for a weaker association in BRCA1 carriers. PATIENT SUMMARY: In this study we followed unaffected men known to carry mutations in the BRCA1 and BRCA2 genes to investigate whether they are at higher risk of developing prostate cancer compared to the general population. We found that carriers of BRCA2 mutations have a high risk of developing prostate cancer, particularly more aggressive prostate cancer, and that this risk varies by family history of prostate cancer and the location of the mutation within the gene
Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers
Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates.
Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS.
Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS.
Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management
Alcohol Consumption, Cigarette Smoking, and Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers: Results from The BRCA1 and BRCA2 Cohort Consortium.
BACKGROUND: Tobacco smoking and alcohol consumption have been intensively studied in the general population to assess their effects on the risk of breast cancer, but very few studies have examined these effects in BRCA1 and BRCA2 mutation carriers. Given the high breast cancer risk for mutation carriers and the importance of BRCA1 and BRCA2 in DNA repair, better evidence on the associations of these lifestyle factors with breast cancer risk is essential. METHODS: Using a large international pooled cohort of BRCA1 and BRCA2 mutation carriers, we conducted retrospective (5,707 BRCA1 mutation carriers and 3,525 BRCA2 mutation carriers) and prospective (2,276 BRCA1 mutation carriers and 1,610 BRCA2 mutation carriers) analyses of alcohol and tobacco consumption using Cox proportional hazards models. RESULTS: For both BRCA1 and BRCA2 mutation carriers, none of the smoking-related variables was associated with breast cancer risk, except smoking for more than 5 years before a first full-term pregnancy (FFTP) when compared with parous women who never smoked. For BRCA1 mutation carriers, the HR from retrospective analysis (HRR) was 1.19 [95% confidence interval (CI), 1.02-1.39] and the HR from prospective analysis (HRP) was 1.36 (95% CI, 0.99-1.87). For BRCA2 mutation carriers, smoking for more than 5 years before an FFTP showed an association of a similar magnitude, but the confidence limits were wider (HRR = 1.25; 95% CI, 1.01-1.55 and HRP = 1.30; 95% CI, 0.83-2.01). For both carrier groups, alcohol consumption was not associated with breast cancer risk. CONCLUSIONS: The finding that smoking during the prereproductive years increases breast cancer risk for mutation carriers warrants further investigation. IMPACT: This is the largest prospective study of BRCA mutation carriers to assess these important risk factors
Exploring the link between MORF4L1 and risk of breast cancer.
INTRODUCTION: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. METHODS: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. RESULTS: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively. CONCLUSIONS: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk
Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
Prostate cancer risk by BRCA2 genomic regions
A BRCA2 prostate cancer cluster region (PCCR) was recently proposed (c.7914 to 3′) wherein pathogenic variants (PVs) are associated with higher prostate cancer (PCa) risk than PVs elsewhere in the BRCA2 gene. Using a prospective cohort study of 447 male BRCA2 PV carriers recruited in the UK and Ireland from 1998 to 2016, we estimated standardised incidence ratios (SIRs) compared with population incidences and assessed variation in risk by PV location. Carriers of PVs in the PCCR had a PCa SIR of 8.33 (95% confidence interval [CI] 4.46–15.6) and were at a higher risk of PCa than carriers of other BRCA2 PVs (SIR = 3.31, 95% CI 1.97–5.57; hazard ratio = 2.34, 95% CI 1.09–5.03). PCCR PV carriers had an estimated cumulative PCa risk of 44% (95% CI 23–72%) by the age of 75 yr and 78% (95% CI 54–94%) by the age of 85 yr. Our results corroborate the existence of a PCCR in BRCA2 in a prospective cohort.
Patient summary
In this report, we investigated whether the risk of prostate cancer for men with a harmful mutation in the BRCA2 gene differs based on where in the gene the mutation is located. We found that men with mutations in one region of BRCA2 had a higher risk of prostate cancer than men with mutations elsewhere in the gene
- …