39 research outputs found

    Boron-rich, cytocompatible block copolymer nanoparticles by polymerization-induced self-assembly

    Get PDF
    Core-shell nanoparticles (NPs) with a boron-rich core were synthesized by RAFT-mediated polymerization-induced self-assembly using a new methacrylic boronate ester monomer. Under specific conditions, sub-100 nm spherical NPs could be obtained at high conversions by either emulsion or dispersion RAFT polymerization using poly(oligo(ethylene glycol) methacrylate) (POEGMA) dithiobenozate-based chain transfer agents. Phenylboronic acid surface-functionalized NPs were obtained using a telechelic POEGMA. Primary data on biocompatibility is provided and suggests suitability as boron delivery agent for boron neutron capture therapy

    All grown up? The fate after 15 years of a quarter of a million UK firms born in 1998

    Get PDF
    The theory of firm growth is in a rather unsatisfactory state. However, the analysis of large firm-level datasets which have become available in recent years allows us to begin building an evidence base which can, in turn, be used to underpin the development of more satisfactory theory. Here we study the 239 thousand UK private sector firms born in 1998 over their first 15 years of life. A first, and quite striking, finding is the extraordinary force of mortality. By age 15, 90% of the UK firms born in 1998 are dead, and, for those surviving to age 15, the hazard of death is still about 10% a year. The chance of death is related to the size and growth of firms in an interesting way. Whilst the hazard rate after 15 years is largely independent of size at birth, it is strongly affected by the current (age 14) size. In particular, firms with more than five employees are half as likely to die in the next year as firms with less than five employees. A second important finding is that most firms, even those which survive to age 15, do not grow very much. By age 15 more than half the 26,000 survivors still have less than five jobs. In other words, the growth paths – what we call the ‘growth trajectories’ – of most of the 26,000 survivors are pretty flat. However, of the firms that do grow, firms born smaller grow faster than those born larger. Another striking finding is that growth is heavily concentrated in the first five years. Whilst growth does continue, even up to age 15, each year after age five it involves only a relatively small proportion of firms. Finally, there are two groups of survivors which contribute importantly to job creation. Some are those born relatively large (with more than 20 jobs) although their growth rate is quite modest. More striking though, is a very small group of firms born very small with less than five jobs (about 5% of all survivors) which contribute a substantial proportion (more than one third) of the jobs added to the cohort total by age 15

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Measurement of the e^(+)e^(-)→ bb(macron) cross section between √s = 10.54 and 11.20 GeV

    Get PDF
    We report e^(+)e^(-)→ bb(macron) cross section measurements by the BABAR experiment performed during an energy scan in the range of 10.54 to 11.20 GeV at the SLAC PEP-II e^(+)e^(-) collider. A total relative error of about 5% is reached in more than 300 center-of-mass energy steps, separated by about 5 MeV. These measurements can be used to derive precise information on the parameters of the Y (10860) and Y (11020) resonances. In particular we show that their widths may be smaller than previously measured

    The Physics of the B Factories

    Get PDF

    Revisiting the stress paradigm for silica nanoparticles: Decoupling of the anti-oxidative defense, pro-inflammatory response and cytotoxicity.

    No full text
    Engineered amorphous silica nanoparticles (nanosilica) are widely used in industry yet can induce adverse effects, which might be classified according to the oxidative stress model. However, the underlying mechanisms as well as the potential interactions of the three postulated different tiers of toxicity—i.e. oxidative-, pro-inflammatory- and cytotoxic-stress response—are poorly understood. As macrophages are primary targets of nanoparticles, we used several macrophage models, primarily murine RAW264.7 macrophages, and monitored pro-inflammatory and anti-oxidative reactions as well as cytotoxicity in response to nanosilica at max. 50 µg/mL. Special attention was given to the activation of mitogen-activated protein kinases (MAPKs) as potential regulators of the cellular stress response. Indeed, according to the oxidative stress model, also nanosilica elicits an, albeit modest, anti-oxidative response as well as pronounced pro-inflammatory reactions and cytotoxicity in macrophages. Interestingly however, these three tiers of toxicity seem to operate separately of each other for nanosilica. Specifically, impeding the anti-oxidative response by scavenging of reactive oxygen species does not prevent the pro-inflammatory and cytotoxic response. Furthermore, blocking the pro-inflammatory response by inhibition of MAPKs does not impair cell death. As hazard assessment has been guided by the prevailing assumption of a dose-dependent coupling of sequential tiers of toxicity, identification of critical physico-chemical parameters to assist the safe-by-design concept should be enabled by simply monitoring one of the toxicity read-outs. Our results indicate a more complex scenario in the case of nanosilica, which triggers independent pleiotropic effects possibly also related to different material properties and primary cellular targets

    Biocompatibility of amine-functionalized silica nanoparticles: The role of surface coverage.

    No full text
    Here, amorphous silica nanoparticles (NPs), one of the most abundant nanomaterials, are used as an example to illustrate the utmost importance of surface coverage by functional groups which critically determines biocompatibility. Silica NPs are functionalized with increasing amounts of amino groups, and the number of surface exposed groups is quantified and characterized by detailed NMR and fluorescamine binding studies. Subsequent biocompatibility studies in the absence of serum demonstrate that, irrespective of surface modification, both plain and amine-modified silica NPs trigger cell death in RAW 264.7 macrophages. The in vitro results can be confirmed in vivo and are predictive for the inflammatory potential in murine lungs. In the presence of serum proteins, on the other hand, a replacement of only 10% of surface-active silanol groups by amines is sufficient to suppress cytotoxicity, emphasizing the relevance of exposure conditions. Mechanistic investigations identify a key role of lysosomal injury for cytotoxicity only in the presence, but not in the absence, of serum proteins. In conclusion, this work shows the critical need to rigorously characterize the surface coverage of NPs by their constituent functional groups, as well as the impact of serum, to reliably establish quantitative nanostructure activity relationships and develop safe nanomaterials
    corecore