59 research outputs found

    Integrated Geophysical Analysis of Passive Continental Margins: Insights into the Crustal Structure of the Namibian Margin from Magnetotelluric, Gravity, and Seismic Data

    Get PDF
    Passive continental margin research amalgamates the investigation of many broad topics, such as the emergence of oceanic crust, lithospheric stress patterns and plume-lithosphere interaction, reservoir potential, methane cycle, and general global geodynamics. Central tasks in this field of research are geophysical investigations of the structure, composition, and dynamic of the passive margin crust and upper mantle. A key practice to improve geophysical models and their interpretation, is the integrated analysis of multiple data, or the integration of complementary models and data. In this thesis, I compare four different inversion results based on data from the Namibian passive continental margin. These are a) a single method MT inversion; b) constrained inversion of MT data, cross-gradient coupled with a fixed structural density model; c) cross-gradient coupled joint inversion of MT and satellite gravity data; d) constrained inversion of MT data, cross-gradient coupled with a fixed gradient velocity model. To bridge the formal analysis of geophysical models with geological interpretations, I define a link between the physical parameter models and geological units. Therefore, the results from the joint MT and gravity inversion (c) are correlated through a user-unbiased clustering analysis. This clustering analysis results in a distinct difference in the signature of the transitional crust south of- and along the supposed hot-spot track Walvis Ridge. I ascribe this contrast to an increase in magmatic activity above the volcanic center along Walvis Ridge. Furthermore, the analysis helps to clearly identify areas of interlayered massive, and weathered volcanic flows, which are usually only identified in reflection seismic studies as seaward dipping reflectors. Lastly, the clustering helps to differentiate two types of sediment cover. Namely, one of near-shore, thick, clastic sediments, and one of further offshore located, more biogenic, marine sediments

    Comparison of Different Coupling Methods for Joint Inversion of Geophysical data: A case study for the Namibian Continental Margin

    Get PDF
    Integration of multiple geophysical data is a key practice to reduce model uncertainties and enhance geological interpretations. Electrical resistivity models resulting from inversion of marine magnetotelluric (MT) data, often lack depth resolution of lithological boundaries and distinct information for shallow model parts. This is due to the diffusive nature of electromagnetic fields, enhanced by deficient data sampling and model regularization during inversion. Thus, integrating data or models to constrain layer thicknesses or structural boundaries is an effective approach to derive better constrained and more detailed resistivity models. We investigate the different impacts of three cross-gradient coupled constraints on 3D MT inversion of data from the Namibian passive continental margin. The three constraints are a) coupling with a fixed structural density model; b) coupling with satellite gravity data; c) coupling with a fixed gradient velocity model. Here we show that coupling with a fixed model (a and c) improves the resistivity model the most. Shallow conductors imaging sediment cover are confined to a thinner layer in the resulting resistivity models compared to the MT-only model. Additionally, these constraints help to suppress vertical smearing of a conductive anomaly attributed to a fracture zone, and clearly show that the seismically imaged Moho is not accompanied by a change in electrical resistivity. All of these observations help to derive an Earth model, which will form the basis for future interpretation of the processes that lead to continental break-up during the early Cretaceous

    Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia

    Get PDF
    When interpreting geophysical models, we need to establish a link between the models’ physical parameters and geological units. To define these connections, it is crucial to consider and compare geophysical models with multiple, independent parameters. Particularly in complex geological scenarios, such as the rifted passive margin offshore Namibia, multi-parameter analysis and joint inversion are key techniques for comprehensive geological inferences. The models resulting from joint inversion enable the definition of specific parameter combinations, which can then be ascribed to geological units. Here we perform a user-unbiased clustering analysis of the parameters electrical resistivity and density from two models derived in a joint inversion along the Namibian passive margin. We link the resulting parameter combinations to break-up related lithology, and infer the history of margin formation. This analysis enables us to clearly differentiate two types of sediment cover. Namely, one of near-shore, thick, clastic sediments, and a second one of further offshore located, more biogenic, marine sediments. Furthermore, we clearly identify areas of interlayered massive, and weathered volcanic flows, which are usually only identified in reflection seismic studies as seaward dipping reflectors. Lastly, we find a distinct difference in the signature of the transitional crust south of- and along the supposed hot-spot track Walvis Ridge. We ascribe this contrast to an increase in magmatic activity above the volcanic centre along Walvis Ridge, and potentially a change in melt sources or depth of melting. This characterizes a rift-related southern complex, and a plume-driven Walvis Ridge regime. All of these observations demonstrate the importance of multi-parameter geophysical analysis for large-scale geological interpretations. Furthermore, our results may improve future joint inversions using direct parameter coupling, by providing a guideline for the complex passive margins parameter correlations

    Molecular Origin of the Charge Carrier Mobility in Small Molecule Organic Semiconductors

    Get PDF
    Small-molecule organic semiconductors are used in a wide spectrum of applications, ranging from organic light emitting diodes to organic photovoltaics. However, the low carrier mobility severely limits their potential, e.g., for large area devices. A number of factors determine mobility, such as molecular packing, electronic structure, dipole moment, and polarizability. Presently, quantitative ab initio models to assess the influence of these molecule-dependent properties are lacking. Here, a multiscale model is presented, which provides an accurate prediction of experimental data over ten orders of magnitude in mobility, and allows for the decomposition of the carrier mobility into molecule-specific quantities. Molecule-specific quantitative measures are provided how two single molecule properties, the dependence of the orbital energy on conformation, and the dipole-induced polarization determine mobility for hole-transport materials. The availability of first-principles based models to compute key performance characteristics of organic semiconductors may enable in silico screening of numerous chemical compounds for the development of highly efficient optoelectronic devices

    3-D Magnetotelluric Image of Offshore Magmatism at the Walvis Ridge and Rift Basin

    Get PDF
    Highlights ‱ We report on marine 3D Magnetotelluric study on Walvis Ridge ‱ Derived 3D electrical resistivity model shows a large scale resistive zone, which we link to crustal extension due to local uplift. It might indicate the location where the hot-spot impinged on the crust prior to rifting ‱ Smaller scale resistive region is attributed to magma ascent during rifting ‱ Rift basin is identified by low resistivity region The Namibian continental margin marks the starting point of the Tristan da Cunha hotspot trail, the Walvis Ridge. This section of the volcanic southwestern African margin is therefore ideal to study the interaction of hotspot volcanism and rifting, which occurred in the late Jurassic/early Cretaceous. Offshore magnetotelluric data image electromagnetically the landfall of Walvis Ridge. Two large-scale high resistivity anomalies in the 3-D resistivity model indicate old magmatic intrusions related to hot-spot volcanism and rifting. The large-scale resistivity anomalies correlate with seismically identified lower crustal high velocity anomalies attributed to magmatic underplating along 2-D offshore seismic profiles. One of the high resistivity anomalies (above 500 Ωm) has three arms of approximately 100 km width and 300 km to 400 km length at 120 degree angles in the lower crust. One of the arms stretches underneath Walvis Ridge. The shape is suggestive of crustal extension due to local uplift. It might indicate the location where the hot-spot impinged on the crust prior to rifting. A second, smaller anomaly of 50 km width underneath the continent ocean boundary may be attributed to magma ascent during rifting. We attribute a low resistivity anomaly east of the continent ocean boundary and south of Walvis Ridge to the presence of a rift basin that formed prior to the rifting

    Microenvironment‐induced restoration of cohesive growth associated with focal activation of P ‐cadherin expression in lobular breast carcinoma metastatic to the colon

    Get PDF
    Invasive lobular carcinoma (ILC) is a special breast cancer type characterized by noncohesive growth and E‐cadherin loss. Focal activation of P‐cadherin expression in tumor cells that are deficient for E‐cadherin occurs in a subset of ILCs. Switching from an E‐cadherin deficient to P‐cadherin proficient status (EPS) partially restores cell–cell adhesion leading to the formation of cohesive tubular elements. It is unknown what conditions control EPS. Here, we report on EPS in ILC metastases in the large bowel. We reviewed endoscopic colon biopsies and colectomy specimens from a 52‐year‐old female (index patient) and of 18 additional patients (reference series) diagnosed with metastatic ILC in the colon. EPS was assessed by immunohistochemistry for E‐cadherin and P‐cadherin. CDH1 /E‐cadherin mutations were determined by next‐generation sequencing. The index patient's colectomy showed transmural metastatic ILC harboring a CDH1 /E‐cadherin p.Q610* mutation. ILC cells displayed different growth patterns in different anatomic layers of the colon wall. In the tunica muscularis propria and the tela submucosa, ILC cells featured noncohesive growth and were E‐cadherin‐negative and P‐cadherin‐negative. However, ILC cells invading the mucosa formed cohesive tubular elements in the intercryptal stroma of the lamina propria mucosae. Inter‐cryptal ILC cells switched to a P‐cadherin‐positive phenotype in this microenvironmental niche. In the reference series, colon mucosa infiltration was evident in 13 of 18 patients, one of which showed intercryptal EPS and conversion to cohesive growth as described in the index patient. The large bowel is a common metastatic site in ILC. In endoscopic colon biopsies, the typical noncohesive growth of ILC may be concealed by microenvironment‐induced EPS and conversion to cohesive growth

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore