2,387 research outputs found

    Improved detection of blood stream pathogens by real-time PCR in severe sepsis

    Get PDF
    Objective: Evaluation of the technical and diagnostic feasibility of commercial multiplex real-time polymerase chain reaction (PCR) for detection of blood stream infections in a cohort of intensive care unit (ICU) patients with severe sepsis, performed in addition to conventional blood cultures. Design: Dual-center cohort study. Setting: Surgical ICU of two university hospitals. Patients and participants: One hundred eight critically ill patients fulfilling the American College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) severe sepsis criteria were included. Interventions: None. Measurements and results: PCR results obtained in 453 blood samples from 108 patients were compared with corresponding blood culture results. PCR resulted in a twofold higher positivity rate when compared with conventional blood culture (BC) testing (114 versus 58 positive samples). In 40 out of 58 PCR positive assays the results of the corresponding blood cultures were identical to microorganisms detected by PCR. In 18 samples PCR and BC yielded discrepant results. Compared with conventional blood culture the sensitivity and specificity of PCR was 0.69 and 0.81, respectively. Further evaluation of PCR results against a constructed gold standard including conventional microbiological test results from other significant patient specimen (such as bronchio-alveolar lavage fluid, urine, swabs) and additionally generated clinical and laboratory information yielded sensitivity of 0.83 and specificity of 0.93. Conclusions: Our cohort study demonstrates improved pathogen detection using PCR findings in addition to conventional blood culture testing. PCR testing provides increased sensitivity of blood stream infection. Studies addressing utility including therapeutic decision-making, outcome, and cost-benefit following diagnostic application of PCR tests are needed to further assess its value in the clinical settin

    The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics

    Get PDF
    The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.</p

    The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics

    Get PDF
    The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.</p

    Chronological aging leads to apoptosis in yeast

    Get PDF
    During the past years, yeast has been successfully established as a model to study mechanisms of apoptotic regulation. However, the beneficial effects of such a cell suicide program for a unicellular organism remained obscure. Here, we demonstrate that chronologically aged yeast cultures die exhibiting typical markers of apoptosis, accumulate oxygen radicals, and show caspase activation. Age-induced cell death is strongly delayed by overexpressing YAP1, a key transcriptional regulator in oxygen stress response. Disruption of apoptosis through deletion of yeast caspase YCA1 initially results in better survival of aged cultures. However, surviving cells lose the ability of regrowth, indicating that predamaged cells accumulate in the absence of apoptotic cell removal. Moreover, wild-type cells outlast yca1 disruptants in direct competition assays during long-term aging. We suggest that apoptosis in yeast confers a selective advantage for this unicellular organism, and demonstrate that old yeast cells release substances into the medium that stimulate survival of the clone

    Applying for, reviewing and funding public health research in Germany and beyond

    Get PDF
    Gerhardus A, Becher H, Groenewegen P, et al. Applying for, reviewing and funding public health research in Germany and beyond. HEALTH RESEARCH POLICY AND SYSTEMS. 2016;14(1): 43.Public health research is complex, involves various disciplines, epistemological perspectives and methods, and is rarely conducted in a controlled setting. Often, the added value of a research project lies in its inter- or trans-disciplinary interaction, reflecting the complexity of the research questions at hand. This creates specific challenges when writing and reviewing public health research grant applications. Therefore, the German Research Foundation (DFG), the largest independent research funding organization in Germany, organized a round table to discuss the process of writing, reviewing and funding public health research. The aim was to analyse the challenges of writing, reviewing and granting scientific public health projects and to improve the situation by offering guidance to applicants, reviewers and funding organizations. The DFG round table discussion brought together national and international public health researchers and representatives of funding organizations. Based on their presentations and discussions, a core group of the participants (the authors) wrote a first draft on the challenges of writing and reviewing public health research proposals and on possible solutions. Comments were discussed in the group of authors until consensus was reached. Public health research demands an epistemological openness and the integration of a broad range of specific skills and expertise. Applicants need to explicitly refer to theories as well as to methodological and ethical standards and elaborate on why certain combinations of theories and methods are required. Simultaneously, they must acknowledge and meet the practical and ethical challenges of conducting research in complex real life settings. Reviewers need to make the rationale for their judgments transparent, refer to the corresponding standards and be explicit about any limitations in their expertise towards the review boards. Grant review boards, funding organizations and research ethics committees need to be aware of the specific conditions of public health research, provide adequate guidance to applicants and reviewers, and ensure that processes and the expertise involved adequately reflect the topic under review

    An AIF orthologue regulates apoptosis in yeast

    Get PDF
    Apoptosis-inducing factor (AIF), a key regulator of cell death, is essential for normal mammalian development and participates in pathological apoptosis. The proapoptotic nature of AIF and its mode of action are controversial. Here, we show that the yeast AIF homologue Ynr074cp controls yeast apoptosis. Similar to mammalian AIF, Ynr074cp is located in mitochondria and translocates to the nucleus of yeast cells in response to apoptotic stimuli. Purified Ynr074cp degrades yeast nuclei and plasmid DNA. YNR074C disruption rescues yeast cells from oxygen stress and delays age-induced apoptosis. Conversely, overexpression of Ynr074cp strongly stimulates apoptotic cell death induced by hydrogen peroxide and this effect is attenuated by disruption of cyclophilin A or the yeast caspase YCA1. We conclude that Ynr074cp is a cell death effector in yeast and rename it AIF-1 (Aif1p, gene AIF1)

    Repurposing of the Run 2 CMS High Level Trigger Infrastructure as a Cloud Resource for Offline Computing

    Get PDF
    The former CMS Run 2 High Level Trigger (HLT) farm is one of the largest contributors to CMS compute resources, providing about 25k job slots for offline computing. This CPU farm was initially employed as an opportunistic resource, exploited during inter-fill periods, in the LHC Run 2. Since then, it has become a nearly transparent extension of the CMS capacity at CERN, being located on-site at the LHC interaction point 5 (P5), where the CMS detector is installed. This resource has been configured to support the execution of critical CMS tasks, such as prompt detector data reconstruction. It can therefore be used in combination with the dedicated Tier 0 capacity at CERN, in order to process and absorb peaks in the stream of data coming from the CMS detector. The initial configuration for this resource, based on statically configured VMs, provided the required level of functionality. However, regular operations of this cluster revealed certain limitations compared to the resource provisioning and use model employed in the case of WLCG sites. A new configuration, based on a vacuum-like model, has been implemented for this resource in order to solve the detected shortcomings. This paper reports about this redeployment work on the permanent cloud for an enhanced support to CMS offline computing, comparing the former and new models’ respective functionalities, along with the commissioning effort for the new setup

    Perceived parental control, restructuring ability, and leisure motivation: A cross-cultural comparison

    Get PDF
    Leisure is viewedworldwide as an important developmental context for adolescents. As leisure research and programs are shared across nations, it is crucial to examine the cultural equivalence of leisure-related constructs and how they are related. Grounded in self-determination theory, this study explored the influence of perceived parental control and leisure restructuring ability on leisure motivation (amotivation and autonomous motivation) using samples of eighth grade adolescents in the United States and South Africa. Results of multiple-group structural equation modeling showed that the measurement model of the constructs was equivalent across the two samples, but the determinants of leisure motivation differed between the two samples. The findings provide implications for future cross-cultural research in leisure and offer insights on design and adaptation of leisure-based intervention and education programs in different cultural contexts.IS

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore