84 research outputs found

    A microscopic model for d-wave charge carrier pairing and non-Fermi-liquid behavior in a purely repulsive 2D electron system

    Full text link
    We investigate a microscopic model for strongly correlated electrons with both on-site and nearest neighbor Coulomb repulsion on a 2D square lattice. This exhibits a state in which electrons undergo a ``somersault'' in their internal spin-space (spin-flux) as they traverse a closed loop in external coordinate space. When this spin-1/2 antiferromagnetic (AFM) insulator is doped, the ground state is a liquid of charged, bosonic meron-vortices, which for topological reasons are created in vortex-antivortex pairs. The magnetic exchange energy of the distorted AFM background leads to a logarithmic vortex-antivortex attraction which overcomes the direct Coulomb repulsion between holes localized on the vortex cores. This leads to the appearance of pre-formed charged pairs. We use the Configuration Interaction (CI) Method to study the quantum translational and rotational motion of various charged magnetic solitons and soliton pairs. The CI method systematically describes fluctuation and quantum tunneling corrections to the Hartree-Fock Approximation (HFA). We find that the lowest energy charged meron-antimeron pairs exhibit d-wave rotational symmetry, consistent with the symmetry of the cuprate superconducting order parameter. For a single hole in the 2D AFM plane, we find a precursor to spin-charge separation in which a conventional charged spin-polaron dissociates into a singly charged meron-antimeron pair. This model provides a unified microscopic basis for (i) non-Fermi-liquid transport properties, (ii) d-wave preformed charged carrier pairs, (iii) mid-infrared optical absorption, (iv) destruction of AFM long range order with doping and other magnetic properties, and (v) certain aspects of angled resolved photo-emission spectroscopy (ARPES).Comment: 14 pages, 17 figure

    Analytic Methods in Nonperturbative QCD

    Full text link
    Recently developed analytic methods in the framework of the Field Correlator Method are reviewed in this series of four lectures and results of calculations are compared to lattice data and experiment. Recent lattice data demonstrating the Casimir scaling of static quark interaction strongly support the FCM and leave very little space for all other theoretical models, e.g. instanton gas/liquid model. Results of calculations for mesons, baryons, quark-gluon plasma and phase transition temperature demonstrate that new analytic methods are a powerful tool of nonperturbative QCD along with lattice simulations.Comment: LaTeX, 34 pages; Lectures given at the 13th Indian-Summer School "Understanding the Structure of Hadrons", August 28 - September 1, 2000, Prague, Czech Republi

    Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Get PDF
    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.

    Observation of isolated high-E_T photons in deep inelastic scattering

    Get PDF
    First measurements of cross sections for isolated prompt photon production in deep inelastic ep scattering have been made using the ZEUS detector at the HERA electron-proton collider using an integrated luminosity of 121 pb^-1. A signal for isolated photons in the transverse energy and rapidity ranges 5 < E_T^gamma < 10 GeV and -0.7 < eta^gamma < 0.9 was observed for virtualities of the exchanged photon of Q^2 > 35 GeV^2. Cross sections are presented for inclusive prompt photons and for those accompanied by a single jet in the range E_T^jet \geq 6 GeV and -1.5 \leq eta^jet < 1.8. Calculations at order alpha^3alpha_s describe the data reasonably well.Comment: 16 pages, 5 figure

    Photoproduction of D±D^{*\pm} mesons associated with a leading neutron

    Full text link
    The photoproduction of D±(2010)D^{*\pm} (2010) mesons associated with a leading neutron has been observed with the ZEUS detector in epep collisions at HERA using an integrated luminosity of 80 pb1^{-1}. The neutron carries a large fraction, {xL>0.2x_L>0.2}, of the incoming proton beam energy and is detected at very small production angles, {θn<0.8\theta_n<0.8 mrad}, an indication of peripheral scattering. The DD^* meson is centrally produced with pseudorapidity {η1.9|\eta| 1.9 GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive DD^* production is 8.85±0.93(stat.)0.61+0.48(syst.)%8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\% in the photon-proton center-of-mass energy range {130<W<280130 <W<280 GeV}. The data suggest that the presence of a hard scale enhances the fraction of events with a leading neutron in the final state.Comment: 28 pages, 4 figures, 2 table

    Measurement of beauty production in deep inelastic scattering at HERA

    Get PDF
    The beauty production cross section for deep inelastic scattering events with at least one hard jet in the Breit frame together with a muon has been measured, for photon virtualities Q^2 > 2 GeV^2, with the ZEUS detector at HERA using integrated luminosity of 72 pb^-1. The total visible cross section is sigma_b-bbar (ep -> e jet mu X) = 40.9 +- 5.7 (stat.) +6.0 -4.4 (syst.) pb. The next-to-leading order QCD prediction lies about 2.5 standard deviations below the data. The differential cross sections are in general consistent with the NLO QCD predictions; however at low values of Q^2, Bjorken x, and muon transverse momentum, and high values of jet transverse energy and muon pseudorapidity, the prediction is about two standard deviations below the data.Comment: 18 pages, 4 figure

    Isolated tau leptons in events with large missing transverse momentum at HERA

    Get PDF
    A search for events containing isolated tau leptons and large missing transverse momentum, not originating from the tau decay, has been performed with the ZEUS detector at the electron-proton collider HERA, using 130 pb^-1 of integrated luminosity. A search was made for isolated tracks coming from hadronic tau decays. Observables based on the internal jet structure were exploited to discriminate between tau decays and quark- or gluon-induced jets. Three tau candidates were found, while 0.40 +0.12 -0.13 were expected from Standard Model processes, such as charged current deep inelastic scattering and single W-boson production. To search for heavy-particle decays, a more restrictive selection was applied to isolate tau leptons produced together with a hadronic final state with high transverse momentum. Two candidate events survive, while 0.20 +-0.05 events are expected from Standard Model processes.Comment: 28 pages, 4 figures, 3 tables, accepted by Phys. Lett. B. Updated with minor changes to the text requested by the journal refere

    Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA

    Get PDF
    Differential inclusive jet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector. Three phase-space regions have been selected in order to study parton dynamics where the effects of BFKL evolution might be present. The measurements have been compared to the predictions of leading-logarithm parton shower Monte Carlo models and fixed-order perturbative QCD calculations. In the forward region, QCD calculations at order alpha_s^1 underestimate the data up to an order of magnitude at low x. An improved description of the data in this region is obtained by including QCD corrections at order alpha_s^2, which account for the lowest-order t-channel gluon-exchange diagrams, highlighting the importance of such terms in parton dynamics at low x.Comment: 25 pages, 4 figure

    Search for lepton-flavor violation at HERA

    Get PDF
    A search for lepton-flavor-violating interactions epμXe p \to \mu X and epτXe p\to \tau X has been performed with the ZEUS detector using the entire HERA I data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data were taken at center-of-mass energies, s\sqrt{s}, of 300 and 318 GeV. No evidence of lepton-flavor violation was found, and constraints were derived on leptoquarks (LQs) that could mediate such interactions. For LQ masses below s\sqrt{s}, limits were set on λeq1βq\lambda_{eq_1} \sqrt{\beta_{\ell q}}, where λeq1\lambda_{eq_1} is the coupling of the LQ to an electron and a first-generation quark q1q_1, and βq\beta_{\ell q} is the branching ratio of the LQ to the final-state lepton \ell (μ\mu or τ\tau) and a quark qq. For LQ masses much larger than s\sqrt{s}, limits were set on the four-fermion interaction term λeqαλqβ/MLQ2\lambda_{e q_\alpha} \lambda_{\ell q_\beta} / M_{\mathrm{LQ}}^2 for LQs that couple to an electron and a quark qαq_\alpha and to a lepton \ell and a quark qβq_\beta, where α\alpha and β\beta are quark generation indices. Some of the limits are also applicable to lepton-flavor-violating processes mediated by squarks in RR-Parity-violating supersymmetric models. In some cases, especially when a higher-generation quark is involved and for the process epτXe p\to \tau X , the ZEUS limits are the most stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig. 6) adde

    Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha_s

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2. The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s) = 318 GeV using the ZEUS detector and correspond to an integrated luminosity of 82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster algorithm in the longitudinally invariant inclusive mode. Measurements of differential dijet and trijet cross sections are presented as functions of jet transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections, is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.) {+0.0064}_{-0.0046}(th.)Comment: 22 pages, 5 figure
    corecore