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Abstract

Differential inclusive jet cross sections in neutral current deep inelastic ep scatter-

ing have been measured with the ZEUS detector using an integrated luminosity

of 38.7 pb−1. The jets have been identified using the kT cluster algorithm in the

longitudinally invariant inclusive mode in the laboratory frame; they have been

selected with jet transverse energy, Ejet
T , above 6 GeV and jet pseudorapidity,

ηjet, between −1 and 3. Measurements of cross sections as functions of Ejet
T ,

ηjet, Bjorken x and the photon virtuality, Q2, are presented. Three phase-space

regions have been selected in order to study parton dynamics from the most

global to the most restrictive region of forward-going (close to the proton-beam

direction) jets at low x, where the effects of BFKL evolution might be present.

The measurements have been compared to the predictions of leading-logarithm

parton-shower Monte Carlo models and fixed-order perturbative QCD calcula-

tions. In the forward region, O(α1
s) QCD calculations underestimate the data up

to an order of magnitude at low x. An improved description of the data in this

region is obtained by including O(α2
s) QCD corrections, which account for the

lowest-order t̂-channel gluon-exchange diagrams, highlighting the importance of

such terms in the parton dynamics at low x.

http://arxiv.org/abs/hep-ex/0502029v1
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1 Introduction

Deep inelastic lepton scattering (DIS) off protons provides information on the parton

distribution functions (PDFs) of the proton. For example, inclusive measurements of

the cross section for the reaction e + p → e + X as a function of the virtuality of the

exchanged boson, Q2, and of the Bjorken-x scaling variable, x, have been used to deter-

mine F p
2 (x,Q2) which, in turn, is analysed in a theoretical context to extract the proton

PDFs. Perturbative QCD in the next-to-leading-order (NLO) approximation has been

widely used to perform such extraction and to test the extent to which it is able to de-

scribe the data. Perturbative QCD can predict only the evolution of the PDFs in Q2;

several approximations have been developed depending on the expected importance of the

different terms in the perturbative expansion. In the standard approach (DGLAP [1]),

the evolution equations sum up all leading double logarithms in lnQ2 · ln 1/x along with

single logarithms in lnQ2 and are expected to be valid for x not too small. At low x, a

better approximation is expected to be provided by the BFKL formalism [2] in which the

evolution equations sum up all leading double logarithms along with single logarithms in

ln 1/x.

The DGLAP evolution equations have been tested extensively at HERA [3–9], and were

found to describe the data, in general, very well. In particular, the striking rise of the

measured F p
2 (x,Q2) at HERA with decreasing x can be accomodated in the DGLAP

approach. On the other hand, the inclusive character of F2 together with the dependence

of the DGLAP predictions on the choice of the input form of the non-perturbative PDFs

at Q2 = Q2
0 may obscure the underlying dynamics at low x. In order to probe the parton

dynamics at low x, measurements of the partonic final state that highlight the differences

predicted by the BFKL and DGLAP formalisms were suggested [10].

In the DGLAP formalism, the parton cascade that results from the hard scattering of

the virtual photon with a parton from the proton is ordered in parton virtuality. This

ordering along the parton ladder implies an ordering in transverse energy of the partons,

ET , with the parton participating in the hard scatter having the highest transverse energy.

In the BFKL formalism, there is no strict ordering in virtuality or transverse energy (see

Fig. 1a). Since the partons emitted at the bottom of the ladder are closest in rapidity to

the outgoing proton, they manifest themselves as forward1 jets. BFKL evolution predicts

that a larger fraction of small x events will contain high-ET forward jets than is predicted

by DGLAP [10, 11].

In previous studies of forward jets in DIS [12–14], the data were compared to Monte

1 The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

proton beam direction, referred to as the ”forward direction”, and the X axis pointing towards the

centre of HERA. The coordinate origin is at the nominal interaction point.
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Carlo simulations which model higher-order parton emissions using the DGLAP approach.

These models do not describe the data. However, it was possible to obtain a better descrip-

tion of the data by adding a second ET -ordered parton cascade on the photon side which is

evolved according to the DGLAP equations; this resolved-photon contribution [15] leads

to parton-parton scattering which can give rise to the production of high-ET jets anywhere

along the (double) ladder between the photon and the proton. The calculations based

on the Colour Dipole Model (CDM) [16], which include parton emissions not ordered in

transverse energy, also described the data. In a more recent analysis [8], fixed-order QCD

calculations were compared to the data. The predictions fail to describe the measurements

in the most forward region at low ET and Q2.

In this paper, measurements of differential inclusive jet cross sections in deep inelastic

scattering are presented in three different phase-space regions, from the most global to

the most restrictive region, where the contribution of events exhibiting BFKL character-

istics should be enhanced. A novel method is introduced (see Section 2) to increase the

sensitivity to additional parton radiation in the forward region while extending the region

in x towards lower values. The jets were reconstructed using the kT cluster algorithm [17]

in the longitudinally invariant mode [18], instead of the cone algorithm used in previous

studies [12–14], which allows a reduction of the theoretical uncertainty associated with

matching the experimental and theoretical jet algorithms. Inclusive jet cross sections

were measured as functions of the jet transverse energy, Ejet
T , pseudorapidity, ηjet, and the

event variables Q2 and x. The effects of higher-order terms in the parton cascade were

explored by comparing the data to fixed-order QCD predictions using current parametri-

sations of the proton PDFs based on DGLAP evolution. In addition, the predictions of

a leading-logarithm parton-shower model based on DGLAP evolution and those of an

implementation of the colour-dipole model were also compared to the data.

2 Theoretical expectations and phase-space defini-

tions

For a given e+p centre-of-mass energy,
√
s, the cross section for neutral current (NC) deep

inelastic ep scattering, e+p → e+ + X, depends on two independent kinematic variables,

which are chosen to be Q2 and the Bjorken scaling variable, x, where Q2 = −q2 and

x = Q2/(2P · q); P (q) is the four-momentum of the incoming proton (exchanged virtual

boson, V ∗, with V = γ or Z0). Other variables used to define the kinematics of the events

are y = Q2/(xs) and γh, defined by cos γh = ((1 − y)xEp − yEe)/((1 − y)xEp + yEe),

where Ep (Ee) is the energy of the incoming proton (positron).

Jet production in NC DIS at O(α0
s) proceeds via V ∗q → q; this process is referred to as

2



being of quark-parton-model (QPM) type. The hadronic final state consists of a single jet

emerging at polar angle γh and balancing the transverse momentum of the scattered e+

plus the remnant of the proton. The NLO QCD corrections of O(α1
s) consist of one-loop

corrections to the process V ∗q → q and the tree-level processes of boson-gluon fusion

(BGF, V ∗g → qq̄) and QCD-Compton (QCDC, V ∗q → qg). In BGF and QCDC, when

the two final-state partons are sufficiently separated from each other, the hadronic final

state consists of two jets plus the remnant of the proton.

The predictions of fixed-order QCD calculations convoluted with PDFs extracted using

the DGLAP equations have the following features for inclusive jet production: a domi-

nant contribution (O(α0
s)) from single-jet events with θjet = γh and a O(α1

s)-suppressed

contribution from dijet events. Since at low values of x the variable γh points toward the

rear direction, the production of forward (having positive values of ηjet) jets is suppressed.

In this region BFKL predicts a higher forward-jet cross section than DGLAP. This effect

can be further enhanced by suppressing the evolution in Q2 by requiring (Ejet
T )2 ∼ Q2.

Experimental studies of QCD using jet production in NC DIS at HERA are often per-

formed in the Breit frame [19]. The analysis presented here was instead performed in

the laboratory frame for two reasons. First, such an analysis provides access to low val-

ues of x: the requirement of a jet in the Breit frame with a given Ejet
T would demand

a larger fraction of the proton’s momentum than that of a jet (with the same Ejet
T ) in

the laboratory frame. It is noted that, in the Breit frame, the exchanged virtual boson

collides head-on with the proton and, therefore, the transverse momentum of a jet must

be balanced by other jet(s). Second, the application of the jet algorithm in the laboratory

frame benefits from the increased resolution for identifying jets in the forward region of

the detector. Jet cross sections in the laboratory frame are theoretically well defined and

NLO QCD calculations for such observables are well behaved [20].

To investigate the NLO QCD predictions in detail, three phase-space regions of inclusive

jet production have been studied. The first region, called “global”, was designed to be as

inclusive as possible to keep the theoretical uncertainties small. This region was defined

by the conditions:

• Q2 > 25 GeV2;

• y > 0.04;

• E ′

e > 10 GeV, where E ′

e is the energy of the scattered positron;

• at least one jet with Ejet
T > 6 GeV and −1 < ηjet < 3.

This phase-space region is expected to be dominated by QPM-type events.

A second phase-space region, called “BFKL”, was defined by the following additional

conditions:

3



• cos γh < 0;

• at least one jet with 0 < ηjet < 3 and 0.5 <
(Ejet

T
)2

Q2 < 2.

The combination of the requirements γh > 90◦ and θjet < 90◦ suppresses the contribution

from QPM-type events. This phase-space region is expected to be dominated by multi-jet

events. The enhancement of the contribution from multi-jet events is done without an

explicit requirement on the number of jets and, thereby, keeping events at low values of x.

The requirement on (Ejet
T )2/Q2 restricts the jet kinematics to the region where the BFKL

effects are expected to be large.

A third phase-space region, called “forward BFKL”, was designed to investigate events

with a very forward-going jet and was defined by requiring, in addition to the aforemen-

tioned cuts, at least one jet with 2 < ηjet < 3.

3 Experimental set-up

The data sample used in this analysis was collected with the ZEUS detector at HERA

and corresponds to an integrated luminosity of 38.7±0.6 pb−1. During 1996-1997, HERA

operated with protons of energy Ep = 820 GeV and positrons of energy Ee = 27.5 GeV. A

detailed description of the ZEUS detector can be found elsewhere [21,22]. A brief outline

of the components that are most relevant for this analysis is given here.

Charged particle tracks are reconstructed in the central tracking detector (CTD) [23],

which operates in a magnetic field of 1.43 T provided by a thin superconducting solenoid.

The CTD consists of 72 cylindrical drift-chamber layers, organised in nine superlayers

covering the polar-angle region 15◦ < θ < 164◦. The transverse-momentum resolution for

full-length tracks can be parameterised as σ(pT )/pT = 0.0058pT⊕0.0065⊕0.0014/pT , with

pT in GeV. The tracking system was used to measure the interaction vertex with a typical

resolution along (transverse to) the beam direction of 0.4 (0.1) cm and to cross-check the

energy scale of the calorimeter.

The high-resolution uranium–scintillator calorimeter (CAL) [24] covers 99.7% of the total

solid angle and consists of three parts: the forward (FCAL, 2.6◦ < θ < 36.7◦), the barrel

(BCAL, 36.7◦ < θ < 129.1◦) and the rear (RCAL, 129.1◦ < θ < 176.2◦) calorimeters. Each

part is subdivided transversely into towers and longitudinally into one electromagnetic

section (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections

(HAC). The smallest subdivision of the calorimeter is called a cell. Under test-beam

conditions, the CAL single-particle relative energy resolutions were σ(E)/E = 0.18/
√
E

for electrons and σ(E)/E = 0.35/
√
E for hadrons, with E in GeV.
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The luminosity was measured from the rate of the bremsstrahlung process ep → eγp. The

resulting small-angle energetic photons were measured by the luminosity monitor [25], a

lead-scintillator calorimeter placed in the HERA tunnel at Z = −107 m.

4 Data selection and jet identification

A three-level trigger was used to select events online [22]. The NC DIS events were

selected offline using criteria similar to those reported previously [26]. The main steps are

outlined below.

The scattered positron candidate was identified from the pattern of energy deposits in the

CAL. The E ′

e and polar angle (θe) of the positron candidate were also determined from

the CAL measurements, after correction for energy loss in inactive material in front of

the CAL. The following requirements were imposed on the data sample:

• the reconstructed Q2 > 25 GeV2;

• a positron candidate of energy E ′

e > 10 GeV. This cut ensured a high and well un-

derstood positron-finding efficiency and suppressed background from photoproduction

events, in which the scattered positron escapes undetected in the rear beampipe;

• the vertex position, determined from CTD tracks, in the range |Zvtx| < 50 cm along

the beam axis. This cut removed background events from non-ep interactions;

• 38 < (E − PZ) < 65 GeV, where E is the total energy measured in the CAL, E =
∑

i Ei, and PZ is the Z component of the vector p =
∑

i Eiri ; in both cases the sum

runs over all CAL cells, Ei is the energy of the CAL cell i and ri is a unit vector along

the line joining the reconstructed vertex to the geometric centre of the cell i. This cut

removed events with large initial-state radiation and further reduced the background

from photoproduction events;

• ye < 0.95, where ye = 1 − E ′

e(1 − cos θe)/(2Ee). This condition removed events in

which fake positron candidates from photoproduction background were found in the

FCAL;

• yJB > 0.04, where yJB =
∑

i Ei(1 − cos θi)/(2Ee) calculated according to the Jacquet-

Blondel method [27], where the sum runs over all CAL cells except those assigned

to the scattered positron. The yJB variable is an estimator of y which gives a good

resolution at low y;

• pCAL
T /

√

ECAL
T < 3

√
GeV, where pCAL

T is the total transverse momentum as measured

with the CAL and ECAL
T is the total transverse energy in the CAL. This cut removed

cosmic rays and beam-related background;
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• |X| > 14 cm or |Y | > 14 cm, where X and Y are the impact positions of the positron

on the CAL, to avoid the low-acceptance region adjacent to the rear beampipe;

• the energy not associated with the positron candidate within a cone of radius 0.7 units

in the pseudorapidity-azimuth (η−φ) plane around the positron direction was required

to be less than 10% of the positron energy. This condition removed photoproduction

and DIS events in which a part of a jet was incorrectly identified as the scattered

positron.

The kinematic variables Q2 and x were reconstructed using a combination of the electron

and double-angle (DA) methods [28], depending on which method gave a better resolution

of the observed scattered-positron energy. The angle γh was reconstructed with the CAL

using:

cos γh =
(
∑

i pX,i)
2 + (

∑

i pY,i)
2 − (

∑

i(E − pZ)i)
2

(
∑

i pX,i)2 + (
∑

i pY,i)
2 + (

∑

i(E − pZ)i)2
,

where the sum runs over all CAL cells, excluding those associated with the scattered

positron.

The kT cluster algorithm was used in the longitudinally invariant inclusive mode to recon-

struct jets in the hadronic final state from the energy deposits in the CAL cells. The jet

algorithm was applied after excluding those cells associated with the scattered-positron

candidate. The jet search was performed in the η − φ space in the laboratory frame.

The jet variables were defined according to the Snowmass convention [29]. Jet transverse

energies were corrected for all energy-loss effects, principally in inactive material, typi-

cally about one radiation length, in front of the CAL. After these corrections to the jet

transverse energy, events with at least one jet satisfying Ejet
T > 6 GeV and −1 < ηjet < 3

were included in the global data sample. The BFKL and forward-BFKL subsamples were

selected using the additional requirements listed in Section 2.

5 Monte Carlo simulation

Samples of events were generated to determine the response of the detector to jets of

hadrons and to determine the correction factors necessary to obtain the hadron-level jet

cross sections. The generated events were passed through the Geant 3.13-based [30]

ZEUS detector- and trigger-simulation programs [22]. They were reconstructed and anal-

ysed by the same program chain as the data.

Neutral current DIS events were generated using the Lepto 6.5.1 program [31] interfaced

to Heracles 4.6.1 [32] via Djangoh 1.1 [33]. The Heracles program includes photon

and Z exchanges and first-order electroweak radiative corrections. The QCD cascade was

modelled with the CDM as implemented in the Ariadne 4.08 program [34]; Ariadne
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simulates the BGF process in addition. The CDM treats gluons emitted from quark-

antiquark (diquark) pairs as radiation from a colour dipole between two partons. This

results in partons that are not ordered in their transverse momenta. Samples of events

were also generated using the model of Lepto based on first-order QCD matrix elements

plus parton showers (MEPS). For the generation of the samples with MEPS, the option for

soft-colour interactions was switched off [35]. In both cases, fragmentation into hadrons

was performed using the Lund string model [36] as implemented in Jetset 7.4 [37]. The

CTEQ4M [38] proton PDFs were used for all simulations.

The jet identification was performed using the simulated energy measured in the CAL

cells in the same way as for the data. The same jet algorithm was also applied to the

final-state particles and to the partons available after the parton shower; the jets found

in this way are referred to as hadronic and partonic jets, respectively.

Electroweak-radiative and hadronisation effects are not at present included in the fixed-

order QCD programs described in Section 7. Therefore, samples of Monte Carlo (MC)

events were generated with and without electroweak-radiative effects so that the data

could be corrected. The samples without electroweak-radiative effects were used to correct

the QCD calculations for hadronisation effects. Since the measurements refer to jets of

hadrons, whereas the QCD calculations refer to partons, the predictions were corrected

to the hadron level using these MC samples. A multiplicative correction factor, Chad,

was defined as the ratio of cross sections for jets of hadrons over that for jets of partons,

and was computed with the MC programs. The factor applied to the predictions was the

average of the correction factors obtained with Ariadne and Lepto. The uncertainty

on the hadronisation correction was taken to be the absolute difference in the correction

factors obtained with Ariadne and Lepto.

6 Acceptance corrections and systematic uncertain-

ties

The Ariadne MC samples of events were used to compute the acceptance corrections.

These correction factors took into account the efficiency of the trigger, the selection cri-

teria, and the purity and efficiency of the jet identification, and were generally between

0.8 and 1.2. The inclusive cross sections for jets of hadrons were determined by applying

bin-by-bin corrections to the measured distributions. For this approach to be valid, the

distributions in the data must be well described by the MC simulations at the detec-

tor level. This condition was in general satisfied by both Ariadne and Lepto. The

Lepto MC samples were used to compute the systematic uncertainties coming from the

parton-shower simulation.
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A study of the main sources contributing to the systematic uncertainties of the measure-

ments was performed [39]. These sources were:

• the parton-shower simulation. The effect of the treatment of the parton shower was

estimated using Lepto to evaluate the acceptance-correction factors. The difference

in the corrected cross sections between using Ariadne and Lepto was taken to be

the value of systematic uncertainty;

• the choice of reconstruction method for the kinematic variables Q2 and x. The dif-

ference in the corrected cross sections between using the electron and double-angle

methods was taken to be the value of systematic uncertainty;

• the biases introduced by the selection cuts. The uncertainty due to the selection

requirements was computed by varying the values of the cuts in data and MC. The

largest effects were due to the cuts on jet transverse energy and hadronic angle.

These systematic uncertainties were added in quadrature. The absolute energy scale of

the jets in data events was varied by its uncertainty of 3% [40]. This uncertainty is highly

correlated between measurements in different bins and is therefore treated separately. The

largest contribution to the overall systematic uncertainty was due to the uncertainty in

the jet energy scale, which averaged about 5%, but could reach values as high as 20%.

The second-largest contribution was due to the choice of parton-shower simulation, which

had effects on the corrected cross section generally below 5%; in the most restrictive

phase space, however, the Ejet
T , x and Q2 bins with the fewest events had large systematic

differences. The uncertainty in the luminosity determination of 1.6% was not included.

7 QCD calculations

The measurements were compared with QCD predictions evaluated using the program

Disent [41]. The calculations were performed in the MS renormalisation and factorisation

schemes using a generalised version of the subtraction method [41]. The number of flavors

was set to five; the renormalisation (µR) and factorisation (µF ) scales were both set to

µR = µF = Q; αs was calculated at two loops using Λ
(5)

MS
= 226 MeV, which corresponds to

αs(MZ) = 0.1180. The CTEQ6 [42] parameterisations of the proton PDFs were used. The

results obtained with Disent were cross-checked using the program Disaster++ [43];

the differences were found to be less than 1% in most cases, and never exceeded 3%.

DISENT allows calculations that sum up to two orders of the perturbation series. In the

global phase-space region, the sample is dominated by single-jet events. Therefore, the

Disent predictions in this region were calculated using the diagrams with O(α0
s) and
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O(α1
s). In the BFKL and forward-BFKL phase-space regions, the samples consist of mul-

tijet events, and so the Disent calculations were computed using terms with O(α1
s) and

O(α2
s). Perturbative QCD calculations at O(α2

s) can give rise to forward jet production at

low x through diagrams such as that shown in Fig. 1b, but no ET -ordering is explicitely

imposed among the three final-state partons.

The following sources of theoretical uncertainties were considered:

• the choice of renormalisation scale. The uncertainty in the calculations arising from

the absence of higher-order terms was estimated by varying µR by a factor of two up

and down. The effect on the calculations is between 5 and 50%, depending on the

phase-space region;

• the uncertainties in the proton PDFs. The effect of these uncertainties in the cal-

culations was estimated by repeating the calculations using 40 additional sets from

CTEQ6. The resulting uncertainty was always below 5%;

• the choice of factorisation scale. The uncertainty in the calculations was estimated

by varying µF by a factor of two up and down. The effect on the calculations was

usually less than 5%, except in the global phase-space region where it contributed a

20% uncertainty at low x.

8 Results

The measurements of cross sections differential in X , where X is ηjet, Ejet
T , Q2 or x, are

presented in the three phase-space regions. The measured cross sections were corrected

to hadron level by the formula:
(

dσ

dX

)

had

=
NData

L · ∆X
· N

had
MC

Ndet
MC

· N
noQED
MC

NQED
MC

where ∆X is the bin size, NData are the numbers of data events, L is the integrated

luminosity, Nhad
MC (Ndet

MC) is the hadron- (detector-) level MC distribution, NQED
MC (NnoQED

MC )

is the hadron-level MC distribution generated with (without) QED radiation.

The cross sections as functions of ηjet and Ejet
T are measurements of every jet in the event,

whereas the cross sections as functions of Q2 and x are event cross sections for the events

in the inclusive jet samples.

8.1 The global phase-space region

The measurements in the global phase-space region are presented in Fig. 2 and Tables 1

to 4. The cross section as a function of ηjet is suppressed in the forward region (high ηjet)
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due to the lower cut on y. The measurements span x values between 0.00074 and 0.24.

The MC predictions and fixed-order QCD calculations are compared to the data in Fig. 2.

The prediction of Ariadne describes all data distributions well, whereas the predictions

from Lepto are slightly worse, especially at the lowest x values. The fixed-order QCD

calculations describe the data at high Ejet
T , Q2 and x values. However, at low values of

these variables, the calculations underestimate the data, and the ηjet distribution is not

described, particularly at high values of ηjet. This excess of the data with respect to

the calculations can be due to the absence of higher orders, since these calculations are

only O(αs). The small uncertainty coming from the variation of µR is not expected to

be a reliable estimate of the contributions from higher orders: contributions from gluon

exchange in the t̂ channel (as shown in Fig. 1b), which become dominant at low x [44],

appear only at higher orders, but their effects cannot be inferred from scale variations of

the (lower) terms considered in the calculation.

8.2 The BFKL phase-space region

The measurements in the BFKL phase-space region are presented in Fig. 3 and Tables 5 to

8. The shape of the cross section as a function of ηjet is steeply falling in the forward region

due to the restriction on γh. The predictions of Ariadne describe all data distributions

well. The predictions of Lepto fail to describe the data, especially in the ηjet distribution

and low-x region.

Fixed-order QCD calculations, which are O(α2
s) in this phase-space region, describe the

data well for Q2, Ejet
T and x, but underestimate the data at high values of ηjet. This

disagreement is concentrated in a region where the cross section is small, and so it is not

reflected in the other distributions. The uncertainty of the calculations due to the absence

of higher orders is larger than before, and is a more realistic estimation than in the global

phase-space region: in the present case the calculation is O(α2
s), which contains the first

contribution from t̂-channel gluon-exchange diagrams (see Fig. 1b).

These features were investigated by comparing the LO (O(α1
s)) and NLO (O(α2

s)) calcu-

lations: a) the scale variation of the NLO calculation is reduced with respect to that of

the LO calculation (not shown) for the cross sections, except for dσ/dηjet in the region

ηjet > 1 and for dσ/dx at low x, where it is larger; b) in these regions the NLO corrections

are largest and the ratio NLO/LO reaches values as large as five for ηjet ∼ 3. The large

increase of the cross section from LO to NLO at low x and large ηjet is associated with the

contribution from t̂-channel gluon-exchange diagrams [45]. The sizeable scale variation

at NLO arises from the fact that such contributions come from tree-level diagrams with

three final-state partons and, as a result, the calculation accounts in an effective way only
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for the lowest-order contribution [45]. Thus, the cross-section calculations at low x and

large ηjet are expected to be subjected to large corrections from higher-order terms.

8.3 The forward BFKL phase-space region

The measurements in the forward BFKL phase-space region are presented in Fig. 4 and

Tables 9 to 11. Events exhibiting BFKL effects are expected to be dominant in this phase-

space region. The predictions of Ariadne describe the data well, whereas the predictions

of Lepto fail in all distributions. Fixed-order QCD calculations are consistently lower

than the data for Ejet
T and Q2. The calculations describe the measurement as a function

of x at high values, but underestimate the data in the low-x region by nearly a factor of

two. The features observed in the comparison of LO and NLO calculations in Section 8.2

are more dramatic in the present case: a) the scale variations of the NLO calculations are

larger than those of LO calculations everywhere except at high x; b) the NLO corrections

are large everywhere except at high x and the ratio NLO/LO reaches values as large as ten

at low x. The increase of the cross-section calculations from LO to NLO, which brings the

predictions closer to the data, is associated with the contribution from t̂-channel gluon-

exchange diagrams, which represent the lowest-order term of the expansion that leads

to the BFKL resummation. The increased scale variation at NLO, which is larger by

nearly a factor of two than that in the BFKL phase-space region, highlights the need for

improved calculations.

9 Summary

Measurements of differential cross sections in Ejet
T , ηjet, Q2 and x for inclusive jet produc-

tion in neutral current deep inelastic scattering have been presented using 38.7 pb−1 of

ZEUS data. The low-x region has been probed for events with Q2 > 25 GeV2 and at least

one jet with Ejet
T > 6 GeV. Three phase-space regions have been studied: one inclusive

region (global phase space), one with an additional requirement on the hadronic angle of

the event (cos γh < 0) and a more limited window of jet pseudorapidity (0 < ηjet < 3), as

well as the requirement 0.5 < (Ejet
T )2/Q2 < 2.0 (BFKL phase space), and finally the more

restricted region with 2 < ηjet < 3 (forward BFKL phase space). The restrictions imposed

in the BFKL phase-space regions enhance the multijet contributions without restricting

the transverse energy of the parton(s) close to the hard scatter.

A large excess of the data over the fixed-order (O(αs)) QCD calculation is observed in

the global phase-space region at high ηjet and low x. This excess cannot be accomodated

within the experimental and the estimated theoretical uncertainties. However, the size of
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the higher-order terms might be underestimated since the scale variations cannot reflect

the contributions from t̂-channel gluon-exchange diagrams, which are expected to become

dominant at low x.

In the BFKL phase-space region, the fixed-order (O(α2
s)) QCD calculation gives, in gen-

eral, a good description of the data except for ηjet > 2, where an excess of the data

over the prediction is observed. In this phase-space region, the NLO QCD corrections

significantly reduce the scale variation of the predicted cross sections with respect to a

LO calculation, except for dσ/dηjet in the region ηjet > 1 and for dσ/dx at low x. In

these regions, the NLO corrections, which account for the lowest-order contribution from

t̂-channel gluon-exchange diagrams, are largest and bring the calculations close to the

data. However, the strong dependence of the calculations with the renormalisation scale

is indicative of the importance of higher-order terms in these regions.

In the forward BFKL region, the fixed-order (O(α2
s)) QCD calculation describes the shape

of the measured differential cross sections dσ/dEjet
T and dσ/dQ2, but fails to describe that

of dσ/dx. The restriction to the region 2 < ηjet < 3 enhances the contribution from

t̂-channel gluon-exchange diagrams, which increases the NLO prediction by up to a factor

of ten at low x with respect to a LO calculation and brings it closer to the data. The

variation of the calculations with the renormalisation scale is large, emphasizing the need

for higher-order calculations. The improved description of the data in this region achieved

by accounting for the lowest-order contribution from t̂-channel gluon-exchange diagrams,

highlights the importance of such terms in the parton dynamics at low x.
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ηjet bin
dσ/dηjet

(pb) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

−1 − −0.5 2722 ±13 +25
−46

+162
−160 0.989 0.812 ± 0.004

−0.5 − 0 3788 ±13 +36
−108

+157
−161 0.972 0.842 ± 0.001

0 − 0.5 4362 ±14 +71
−82

+175
−178 0.956 0.856 ± 0.005

0.5 − 1 4791 ±15 +38
−97

+163
−175 0.951 0.880 ± 0.004

1 − 1.5 4217 ±16 +24
−34

+106
−109 0.947 1.025 ± 0.007

1.5 − 2 2538 ±11 +18
−22

+71
−71 0.953 1.12 ± 0.03

2 − 2.5 1323 ±8 +25
−132

+46
−45 0.959 1.02 ± 0.05

2.5 − 3 685 ±5 +36
−74

+39
−37 0.960 0.97 ± 0.05

Table 1: Inclusive jet cross-section dσ/dηjet for jets of hadrons in the global phase
space. The statistical, systematic and jet-energy-scale uncertainties are shown sep-
arately. The multiplicative correction applied to correct for QED radiative effects
and for hadronisation effects are shown in the last two columns.

Ejet
T bin

(GeV)

dσ/dEjet
T

(pb/GeV) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

6 − 8 2685 ±6 +20
−72

+26
−33 0.965 0.910 ± 0.006

8 − 10 1408 ±4 +8
−36

+53
−57 0.954 0.9163 ± 0.0005

10 − 14 599.9 ±1.9 +4.5
−9.3

+37.6
−36.3 0.957 0.917 ± 0.003

14 − 21 165.55 ±0.75 +1.94
−2.40

+12.51
−11.75 0.961 0.93 ± 0.02

21 − 29 40.59 ±0.35 +0.83
−0.84

+3.58
−3.82 0.956 0.94 ± 0.02

29 − 47 7.90 ±0.10 +0.18
−0.21

+0.82
−0.76 0.953 0.96 ± 0.01

47 − 71 0.873 ±0.030 +0.052
−0.043

+0.120
−0.095 0.966 0.965 ± 0.007

71 − 127 0.0433 ±0.0044 +0.0080
−0.0047

+0.0068
−0.0100 0.996 0.980 ± 0.001

Table 2: Inclusive jet cross-section dσ/dEjet
T for jets of hadrons in the global phase

space. The statistical, systematic and jet-energy-scale uncertainties are shown sep-
arately. The multiplicative correction applied to correct for QED radiative effects
and for hadronisation effects are shown in the last two columns.
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Q2 bin

(GeV2)

dσ/dQ2

(pb/GeV2) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

25 − 50 127.11 ±0.35 +2.06
−8.64

+8.46
−8.55 0.970 0.85 ± 0.01

50 − 100 73.26 ±0.20 +0.66
−1.46

+2.32
−2.47 0.961 0.937 ± 0.008

100 − 250 17.965 ±0.055 +0.140
−0.174

+0.139
−0.157 0.952 1.001 ± 0.001

250 − 630 2.550 ±0.013 +0.019
−0.036

+0.003
−0.004 0.947 1.0046 ± 0.0003

630 − 1600 0.3128 ±0.0028 +0.0039
−0.0049

+0.0002
−0.0003 0.934 1.003 ± 0.001

1600 − 4000 0.03072 ±0.00057 +0.00091
−0.00060

+0
−0 0.930 1.0004 ± 0.0009

4000 − 105 0.0001764 ±0.0000069 +0.0000124
−0.0000092

+0
−0 0.975 0.998 ± 0.002

Table 3: Cross-section dσ/dQ2 for events in the global phase space. The sta-
tistical, systematic and jet-energy-scale uncertainties are shown separately. The
multiplicative correction applied to correct for QED radiative effects and for hadro-
nisation effects are shown in the last two columns.

x bin
dσ/dx

(nb) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

.0001 − .001 507.7 ±3.7 +21.4
−48.8

+28.8
−28.5 1.029 0.94 ± 0.03

.001 − .0025 1255.6 ±4.6 +19.7
−114.3

+73.8
−74.5 0.985 0.914 ± 0.002

.0025 − .0063 883.5 ±2.4 +35.6
−22.4

+40.3
−41.2 0.965 0.903 ± 0.004

.0063 − .0158 330.35 ±0.93 +2.00
−2.61

+6.11
−7.01 0.945 0.928 ± 0.002

.0158 − .04 60.22 ±0.26 +0.42
−3.42

+0.18
−0.19 0.942 0.9899 ± 0.0005

.04 − .1 7.607 ±0.056 +0.064
−0.408

+0.004
−0.002 0.922 0.9989 ± 0.0007

.1 − 1 0.1622 ±0.0023 +0.0048
−0.0032

+0.0001
−0.0001 0.914 0.99960 ± 0.00001

Table 4: Cross-section dσ/dx for events in the global phase space. The statistical,
systematic and jet-energy-scale uncertainties are shown separately. The multiplica-
tive correction applied to correct for QED radiative effects and for hadronisation
effects are shown in the last two columns.
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ηjet bin
dσ/dηjet

(pb) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

0 − 0.5 2228 ±11 +41
−50

+74
−81 0.951 1.10 ± 0.02

0.5 − 1 869 ±7 +22
−31

+24
−24 0.977 1.10 ± 0.06

1 − 1.5 464 ±5 +13
−40

+21
−19 0.981 1.01 ± 0.04

1.5 − 2 339 ±4 +10
−27

+15
−18 0.973 0.98 ± 0.06

2 − 2.5 276 ±4 +9
−30

+14
−16 1.004 0.93 ± 0.06

2.5 − 3 186 ±3 +11
−15

+13
−14 0.993 0.93 ± 0.06

Table 5: Inclusive jet cross-section dσ/dηjet for jets of hadrons in the BFKL phase
space. The statistical, systematic and jet-energy-scale uncertainties are shown sep-
arately. The multiplicative correction applied to correct for QED radiative effects
and for hadronisation effects are shown in the last two columns.

Ejet
T bin

(GeV)

dσ/dEjet
T

(pb/GeV) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

6 − 8 619.0 ±2.9 +10.3
−20.6

+17.3
−17.2 0.967 1.06 ± 0.05

8 − 10 249.3 ±1.8 +4.0
−6.9

+10.8
−11.3 0.964 1.06 ± 0.03

10 − 14 77.76 ±0.73 +2.64
−2.81

+4.01
−4.61 0.964 1.08 ± 0.03

14 − 21 15.32 ±0.25 +0.36
−0.95

+1.00
−1.11 0.976 1.04 ± 0.04

21 − 29 2.325 ±0.089 +0.170
−0.147

+0.254
−0.292 0.951 1.052 ± 0.009

29 − 47 0.245 ±0.019 +0.030
−0.033

+0.031
−0.040 0.957 0.951 ± 0.004

Table 6: Inclusive jet cross-section dσ/dEjet
T for jets of hadrons in the BFKL

phase space. The statistical, systematic and jet-energy-scale uncertainties are
shown separately. The multiplicative correction applied to correct for QED radiative
effects and for hadronisation effects are shown in the last two columns.
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Q2 bin

(GeV2)

dσ/dQ2

(pb/GeV2) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

25 − 50 35.62 ±0.20 +0.98
−1.84

+1.60
−1.58 0.967 1.01 ± 0.03

50 − 100 14.858 ±0.090 +0.357
−0.528

+0.431
−0.463 0.968 1.12 ± 0.04

100 − 250 2.121 ±0.020 +0.074
−0.106

+0.068
−0.070 0.954 1.15 ± 0.03

250 − 630 0.1868 ±0.0038 +0.0077
−0.0118

+0.0058
−0.0112 0.985 1.16 ± 0.02

630 − 1600 0.01262 ±0.00062 +0.00082
−0.00155

+0.00080
−0.00102 0.957 1.144 ± 0.003

Table 7: Cross-section dσ/dQ2 for events in the BFKL phase space. The sta-
tistical, systematic and jet-energy-scale uncertainties are shown separately. The
multiplicative correction applied to correct for QED radiative effects and for hadro-
nisation effects are shown in the last two columns.

x bin
dσ/dx

(nb) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

.0001 − .001 145.6 ±1.9 +6.2
−22.1

+7.9
−8.5 1.023 0.90 ± 0.05

.001 − .0025 393.6 ±2.6 +13.2
−25.0

+15.8
−14.8 0.992 1.01 ± 0.05

.0025 − .0063 286.4 ±1.5 +10.9
−14.0

+9.6
−9.8 0.951 1.11 ± 0.02

.0063 − .0158 21.69 ±0.24 +0.98
−1.46

+0.55
−0.88 0.942 1.2282 ± 0.0001

.0158 − .04 0.591 ±0.025 +0.041
−0.070

+0.035
−0.054 0.944 1.18 ± 0.01

Table 8: Cross-section dσ/dx for events in the BFKL phase space. The statistical,
systematic and jet-energy-scale uncertainties are shown separately. The multiplica-
tive correction applied to correct for QED radiative effects and for hadronisation
effects are shown in the last two columns.

19



Ejet
T bin

(GeV)

dσ/dEjet
T

(pb/GeV) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

6 − 8 75.5 ±1.0 +3.4
−5.3

+4.0
−4.3 0.997 0.91 ± 0.06

8 − 10 24.08 ±0.57 +0.81
−1.94

+1.58
−1.79 0.991 0.95 ± 0.06

10 − 14 6.08 ±0.20 +0.29
−0.73

+0.49
−0.58 0.999 0.99 ± 0.03

14 − 21 0.871 ±0.055 +0.067
−0.083

+0.062
−0.052 0.998 1.03 ± 0.07

21 − 29 0.081 ±0.016 +0.032
−0.026

+0.018
−0.012 0.922 1.01 ± 0.03

Table 9: Inclusive jet cross-section dσ/dEjet
T for jets of hadrons in the forward-

BFKL phase space. The statistical, systematic and jet-energy-scale uncertainties
are shown separately. The multiplicative correction applied to correct for QED
radiative effects and for hadronisation effects are shown in the last two columns.
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Q2 bin

(GeV2)

dσ/dQ2

(pb/GeV2) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

25 − 50 4.650 ±0.075 +0.190
−0.420

+0.273
−0.320 0.992 0.93 ± 0.06

50 − 100 1.587 ±0.029 +0.098
−0.092

+0.106
−0.094 0.999 0.93 ± 0.06

100 − 250 0.1735 ±0.0053 +0.0070
−0.0202

+0.0094
−0.0108 0.984 0.96 ± 0.02

250 − 630 0.01093 ±0.00080 +0.00103
−0.00180

+0.00047
−0.00083 1.010 1.03 ± 0.01

630 − 1600 0.000414 ±0.000093 +0.000170
−0.000126

+0
−0.000041 0.944 1.04 ± 0.02

Table 10: Cross-section dσ/dQ2 for events in the forward-BFKL phase space.
The statistical, systematic and jet-energy-scale uncertainties are shown separately.
The multiplicative correction applied to correct for QED radiative effects and for
hadronisation effects are shown in the last two columns.

x bin
dσ/dx

(nb) ∆stat ∆syst ∆jet−ES

QED
correction

PAR to HAD
correction

.0001 − .001 36.4 ±1.1 +3.0
−6.7

+2.4
−2.2 1.066 0.88 ± 0.06

.001 − .0025 68.0 ±1.1 +2.5
−6.2

+4.1
−4.7 1.024 0.91 ± 0.07

.0025 − .0063 22.12 ±0.41 +1.67
−1.70

+1.46
−1.34 0.962 0.96 ± 0.04

.0063 − .0158 0.872 ±0.039 +0.077
−0.066

+0.026
−0.059 0.957 1.00 ± 0.03

.0158 − .04 0.01113 ±0.0021 +0.0095
−0.0029

+0
−0.0012 0.945 0.9 ± 0.1

Table 11: Cross-section dσ/dx for events in the forward-BFKL phase space.
The statistical, systematic and jet-energy-scale uncertainties are shown separately.
The multiplicative correction applied to correct for QED radiative effects and for
hadronisation effects are shown in the last two columns.
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Figure 1: (a) Gluon-ladder Feynman diagram. In DGLAP evolution, the final-
state partons are ordered in transverse energy, k2

T,n > k2
T,n−1 > k2

T,1. In BFKL, the
partons are emitted without any ordering in kT along the ladder. (b) Example of
Feynman diagram with t̂-channel gluon exchange at O(α2

s).
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Figure 2: Differential cross sections (dots) in the global phase space for inclusive

jet production in NC DIS with Ejet
T > 6 GeV, −1 < ηjet < 3, Q2 > 25 GeV2 and

y > 0.04 as functions of (a) ηjet, (b) Ejet
T , (c) Q2 and (d) x. The uncertainties are

generally smaller than the markers; where visible the thick error bars represent the
statistical uncertainty and the thin error bars show the statistical and systematic
uncertainties added in quadrature. The uncertainty in the absolute energy scale of
the jets is shown separately as a shaded band. The calculations of CDM (dashed
lines), MEPS (dotted lines) and O(αs) QCD calculations (solid lines) are shown.
The lower part of each plot shows the ratio of data to the QCD calculations and
the theoretical uncertainties.
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Figure 3: Differential cross sections (dots) in the BFKL phase space for inclusive

jet production in NC DIS with Ejet
T > 6 GeV, 0 < ηjet < 3, Q2 > 25 GeV2, y > 0.04,

cos γh < 0 and 0.5 < (Ejet
T )2/Q2 < 2 as functions of (a) ηjet, (b) Ejet

T , (c) Q2 and
(d) x. The O(αs) (dot-dashed lines) and O(α2

s) (solid lines) QCD calculations are
shown. Other details are as in the caption to Fig. 2.
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Figure 4: Differential cross sections (dots) in the forward BFKL phase space for

inclusive jet production in NC DIS with Ejet
T > 6 GeV, 2 < ηjet < 3, Q2 > 25 GeV2,

y > 0.04, cos γh < 0 and 0.5 < (Ejet
T )2/Q2 < 2 as functions of (a) Ejet

T , (b) Q2 and
(c) x. The O(αs) (dot-dashed lines) and O(α2

s) (solid lines) QCD calculations are
shown. Other details are as in the caption to Fig. 2.
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