17 research outputs found

    Influence of turbulence on the dynamo threshold

    Get PDF
    We use direct and stochastic numerical simulations of the magnetohydrodynamic equations to explore the influence of turbulence on the dynamo threshold. In the spirit of the Kraichnan-Kazantsev model, we model the turbulence by a noise, with given amplitude, injection scale and correlation time. The addition of a stochastic noise to the mean velocity significantly alters the dynamo threshold. When the noise is at small (resp. large) scale, the dynamo threshold is decreased (resp. increased). For a large scale noise, a finite correlation time reinforces this effect

    Magnetohydrodynamic experiments on cosmic magnetic fields

    Full text link
    It is widely known that cosmic magnetic fields, i.e. the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale liquid sodium facilities in Riga and Karlsruhe. Recently, self-excitation was also obtained in the French "von Karman sodium" (VKS) experiment. An MRI-like mode was found on the background of a turbulent spherical Couette flow at the University of Maryland. Evidence for MRI as the first instability of an hydrodynamically stable flow was obtained in the "Potsdam Rossendorf Magnetic Instability Experiment" (PROMISE). In this review, the history of dynamo and MRI related experiments is delineated, and some directions of future work are discussed.Comment: 25 pages, 26 figures, to appear in ZAM

    Impact of time-dependent non-axisymmetric velocity perturbations on dynamo action of von-K\'arm\'an-like flows

    Full text link
    We have performed numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency of an axisymmetric von-K\'arm\'an-like flow subject to time-dependent non-axisymmetric velocity perturbations. The numerical model is based on the setup of the French Von-K\'arm\'an-Sodium dynamo (VKS) and on the flow measurements from a model water experiment conducted at the University of Navarra in Pamplona, Spain. Our simulations show that the interactions of azimuthally drifting flow perturbations with the fundamental drift of the magnetic eigenmode (caused by the inevitable equatorial symmetry breaking of the basic flow) essentially determine the temporal behavior of the dynamo state. We find two distinct regimes of dynamo action that depend on the (prescribed) drift frequency of an (m=2m=2) vortex-like flow perturbation. For comparatively slowly drifting vortices we observe a narrow window with enhanced growth-rates and a drift of the magnetic eigenmode that is synchronized with the perturbation drift. The resonance-like enhancement of the growth-rates takes place when the vortex drift frequency roughly equals the drift frequency of the magnetic eigenmode in the unperturbed system. Outside of this small window, the field generation is hampered compared to the unperturbed case, and the field amplitude of the magnetic eigenmode is modulated with approximately twice the vortex drift frequency. The abrupt transition between the resonant regime and the modulated regime is identified as an spectral exceptional point where eigenvalues (growth-rates and frequencies) and eigenfunctions of two previously independent modes collapse.Comment: 14 pages, 14 Figures. Minor changes to match the published versio
    corecore