145 research outputs found

    Fluctuation relations without micro-reversibility for two-terminal conductors

    Full text link
    In linear transport, the fluctuation-dissipation theorem relates equilibrium current correlations to the linear conductance coefficient. Theory and experiment have shown that in small electrical conductors the non-linear I-V-characteristic of two-terminal conductor exhibits terms which are asymmetric in magnetic field and thus micro-reversibility is manifestly broken. We discuss a non-equilibrium fluctuation dissipation theorem which is not based on micro-reversibility. It connects the antisymmetric nonlinear conductance with the third cumulant of equilibrium current fluctuations and a noise term that is proportional to temperature, magnetic field and voltage.Comment: 6 pages, 2 figures, corrected typo

    Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport

    Get PDF
    Excitation transfer through interacting systems plays an important role in many areas of physics, chemistry, and biology. The uncontrollable interaction of the transmission network with a noisy environment is usually assumed to deteriorate its transport capacity, especially so when the system is fundamentally quantum mechanical. Here we identify key mechanisms through which noise such as dephasing, perhaps counter intuitively, may actually aid transport through a dissipative network by opening up additional pathways for excitation transfer. We show that these are processes that lead to the inhibition of destructive interference and exploitation of line broadening effects. We illustrate how these mechanisms operate on a fully connected network by developing a powerful analytical technique that identifies the invariant (excitation trapping) subspaces of a given Hamiltonian. Finally, we show how these principles can explain the remarkable efficiency and robustness of excitation energy transfer from the light-harvesting chlorosomes to the bacterial reaction center in photosynthetic complexes and present a numerical analysis of excitation transport across the Fenna-Matthew-Olson (FMO) complex together with a brief analysis of its entanglement properties. Our results show that, in general, it is the careful interplay of quantum mechanical features and the unavoidable environmental noise that will lead to an optimal system performance.Comment: 16 pages, 9 figures; See Video Abstract at http://www.quantiki.org/video_abstracts/09014454 . New revised version; discussion of entanglement properties enhance

    Self-consistent mode-coupling theory for the viscosity of rod-like polyelectrolyte solutions

    Get PDF
    A self-consistent mode-coupling theory is presented for the viscosity of solutions of charged rod-like polymers. The static structure factor used in the theory is obtained from polymer integral equation theory; the Debye-H\"{u}ckel approximation is inadequate even at low concentrations. The theory predicts a non-monotonic dependence of the reduced excess viscosity, ηR\eta_R, on concentration from the behaviour of the static structure factor in polyelectrolyte solutions. The theory predicts that the peak in ηR\eta_R occurs at concentrations slightly lower than the overlap threshold concentration, cc^\ast. The peak height increases dramatically with increasing molecular weight and decreases with increased concentrations of added salt. The position of the peak, as a function of concentration divided by cc^\ast is independent of salt concentration or molecular weight. The predictions can be tested experimentally.Comment: 9 pages, 9 figures (2 figures added in the revise version

    Conformational disorder and energy migration in MEH-PPV with partially broken conjugation

    Get PDF
    In order to obtain a better understanding of the role of conformational disorder in the photophysics of conjugated polymers the ultrafast transient absorption anisotropy of partially deconjugated MEH-PPV has been measured. These data have been compared to the corresponding kinetics of Monte Carlo-simulated polymer chains, and estimates of the energy hopping time and energy migration distances for the polymers have been obtained. We find that the energy migration in the investigated MEH-PPV is approximately 3 times faster than in previously studied polythiophenes. We attribute this to a more disordered chain conformation in MEH-PPV. (C) 2003 American Institute of Physics

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Erratum: Search for Resonant and Nonresonant Higgs Boson Pair Production in the bb[over ¯]τ^{+}τ^{-} Decay Channel in pp Collisions at sqrt[s]=13  TeV with the ATLAS Detector [Phys. Rev. Lett. 121, 191801 (2018)]

    Get PDF

    Search for high-mass resonances in final states with a τ-lepton and missing transverse momentum with the ATLAS detector

    Get PDF

    Emulating the impact of additional proton–proton interactions in the ATLAS simulation by presampling sets of inelastic Monte Carlo events

    Get PDF
    The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy

    Search for quantum black hole production in lepton + jet final states using proton-proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for quantum black holes in electron + jet and muon + jet invariant mass spectra is performed with 140     fb − 1 of data collected by the ATLAS detector in proton-proton collisions at √ s = 13     TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton + jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model

    Ueber Rhaphium suicipes Mg

    No full text
    Volume: 11Start Page: 8End Page:
    corecore