434 research outputs found

    Surface, but Not Age, Impacts Lower Limb Joint Work during Walking and Stair Ascent

    Get PDF
    Older adults often suffer an accidental fall when navigating challenging surfaces during common locomotor tasks, such as walking and ascending stairs. This study examined the effect of slick and uneven surfaces on lower limb joint work in older and younger adults while walking and ascending stairs. Fifteen young (18–25 years) and 12 older (\u3e65 years) adults had stance phase positive limb and joint work quantified during walking and stair ascent tasks on a normal, slick, and uneven surface, which was then submitted to a two-way mixed model ANOVA for analysis. The stair ascent required greater limb, and hip, knee, and ankle work than walking (all p \u3c 0.001), with participants producing greater hip and knee work during both the walk and stair ascent (both p \u3c 0.001). Surface, but not age, impacted positive limb work. Participants increased limb (p \u3c 0.001), hip (p = 0.010), and knee (p \u3c 0.001) positive work when walking over the challenging surfaces, and increased hip (p = 0.015), knee (p \u3c 0.001), and ankle (p = 0.010) work when ascending stairs with challenging surfaces. Traversing a challenging surface during both walking and stair ascent tasks required greater work production from the large proximal hip and knee musculature, which may increase the likelihood of an accidental fall in older adults

    Surface, but Not Age Impact Lower Limb Joint Work During Walk and Stair Ascent

    Get PDF
    During common locomotor activates, such as walk or stair negotiation, older adults exhibit unfavorable lower limb biomechanical changes, including diminished joint torque and power, and proximal mechanical work redistribution that may increase their fall risk. Twelve young (18 to 25 years) and 12 older (\u3e 65 years) adults performed a walk and stair ascent task on a normal, slick, and uneven surface. For each walk and stair ascent trial, synchronous 3D marker trajectories and GRF data were collected. Stance phase positive limb and joint work, and relative joint work were submitted to statistical analysis. Ascending stairs required more positive work than the walk, particularly from the knee, which may increase fall risk. Yet, both walking and ascending stairs over a challenging surface required more, proximally distributed work

    Integration of Neural Architecture within a Finite Element Framework for Improved Neuromusculoskeletal Modeling

    Get PDF
    Neuromusculoskeletal (NMS) models can aid in studying the impacts of the nervous and musculoskeletal systems on one another. These computational models facilitate studies investigating mechanisms and treatment of musculoskeletal and neurodegenerative conditions. In this study, we present a predictive NMS model that uses an embedded neural architecture within a finite element (FE) framework to simulate muscle activation. A previously developed neuromuscular model of a motor neuron was embedded into a simple FE musculoskeletal model. Input stimulation profiles from literature were simulated in the FE NMS model to verify effective integration of the software platforms. Motor unit recruitment and rate coding capabilities of the model were evaluated. The integrated model reproduced previously published output muscle forces with an average error of 0.0435 N. The integrated model effectively demonstrated motor unit recruitment and rate coding in the physiological range based upon motor unit discharge rates and muscle force output. The combined capability of a predictive NMS model within a FE framework can aid in improving our understanding of how the nervous and musculoskeletal systems work together. While this study focused on a simple FE application, the framework presented here easily accommodates increased complexity in the neuromuscular model, the FE simulation, or both

    Surface, but Not Age Impacts Lower Limb Joint Work During Stair Ascent

    Get PDF
    Introduction: Age-related loss in lower limb strength, particularly at the ankle, may impair older adults (over 65 years of age) mobility, and result in biomechanical deficits compared to their younger counterparts. Older adults tend to walk slower with shorter steps and exhibit diminished ankle joint kinetics (i.e., moment, power and work). Although the compromised ankle function leads older adults to produce smaller ankle joint torques and power output, reducing forces to propel the center of mass forward, it is unclear if they redistributed, or increase hip or knee work to safely walk, particularly when challenged with an uneven or slick surface. Objective: To compare positive lower limb work for young and older adults when walking over challenging surfaces, and determine whether redistributed power output. Methods: Twenty-eight (16 young, 18 to 25 years and 12 older, over 65 years) adults had positive work in the lower limb quantified when walking a self-selected speed over three surfaces (normal, uneven, and slick). Total limb, hip, knee and ankle positive work, and relative effort (% of total) at each joint were submitted to RM ANOVA to test main effect and interaction between surface (normal, uneven, and slick) and age (young and older adults). Results: Surface, but not age impact positive lower limb work. Surface impacted total limb (p=0.000), hip (p=0.007) and knee (p=0.001) positive work. The limb and knee produced more positive work on the uneven compared normal (

    Robust automatic hexahedral cartilage meshing framework enables population-based computational studies of the knee

    Get PDF
    Osteoarthritis of the knee is increasingly prevalent as our population ages, representing an increasing financial burden, and severely impacting quality of life. The invasiveness of in vivo procedures and the high cost of cadaveric studies has left computational tools uniquely suited to study knee biomechanics. Developments in deep learning have great potential for efficiently generating large-scale datasets to enable researchers to perform population-sized investigations, but the time and effort associated with producing robust hexahedral meshes has been a limiting factor in expanding finite element studies to encompass a population. Here we developed a fully automated pipeline capable of taking magnetic resonance knee images and producing a working finite element simulation. We trained an encoder-decoder convolutional neural network to perform semantic image segmentation on the Imorphics dataset provided through the Osteoarthritis Initiative. The Imorphics dataset contained 176 image sequences with varying levels of cartilage degradation. Starting from an open-source swept-extrusion meshing algorithm, we further developed this algorithm until it could produce high quality meshes for every sequence and we applied a template-mapping procedure to automatically place soft-tissue attachment points. The meshing algorithm produced simulation-ready meshes for all 176 sequences, regardless of the use of provided (manually reconstructed) or predicted (automatically generated) segmentation labels. The average time to mesh all bones and cartilage tissues was less than 2 min per knee on an AMD Ryzen 5600X processor, using a parallel pool of three workers for bone meshing, followed by a pool of four workers meshing the four cartilage tissues. Of the 176 sequences with provided segmentation labels, 86% of the resulting meshes completed a simulated flexion-extension activity. We used a reserved testing dataset of 28 sequences unseen during network training to produce simulations derived from predicted labels. We compared tibiofemoral contact mechanics between manual and automated reconstructions for the 24 pairs of successful finite element simulations from this set, resulting in mean root-mean-squared differences under 20% of their respective min-max norms. In combination with further advancements in deep learning, this framework represents a feasible pipeline to produce population sized finite element studies of the natural knee from subject-specific models

    Emerging Gene-Editing Modalities for Osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a pathological degenerative condition of the joints that is widely prevalent worldwide, resulting in significant pain, disability, and impaired quality of life. The diverse etiology and pathogenesis of OA can explain the paucity of viable preventive and disease-modifying strategies to counter it. Advances in genome-editing techniques may improve disease-modifying solutions by addressing inherited predisposing risk factors and the activity of inflammatory modulators. Recent progress on technologies such as CRISPR/Cas9 and cell-based genome-editing therapies targeting the genetic and epigenetic alternations in OA offer promising avenues for early diagnosis and the development of personalized therapies. The purpose of this literature review was to concisely summarize the genome-editing options against chronic degenerative joint conditions such as OA with a focus on the more recently emerging modalities, especially CRISPR/Cas9. Future advancements in novel genome-editing therapies may improve the efficacy of such targeted treatments

    Patellar mechanics during simulated kneeling in the natural and implanted knee

    Get PDF
    AbstractKneeling is required during daily living for many patients after total knee replacement (TKR), yet many patients have reported that they cannot kneel due to pain, or avoid kneeling due to discomfort, which critically impacts quality of life and perceived success of the TKR procedure. The objective of this study was to evaluate the effect of component design on patellofemoral (PF) mechanics during a kneeling activity. A computational model to predict natural and implanted PF kinematics and bone strains after kneeling was developed and kinematics were validated with experimental cadaveric studies. PF joint kinematics and patellar bone strains were compared for implants with dome, medialized dome, and anatomic components. Due to the less conforming nature of the designs, change in sagittal plane tilt as a result of kneeling at 90° knee flexion was approximately twice as large for the medialized-dome and dome implants as the natural case or anatomic implant, which may result in additional stretching of the quadriceps. All implanted cases resulted in substantial increases in bone strains compared with the natural knee, but increased strains in different regions. The anatomic patella demonstrated increased strains inferiorly, while the dome and medialized dome showed increases centrally. An understanding of the effect of implant design on patellar mechanics during kneeling may ultimately provide guidance to component designs that reduces the likelihood of knee pain and patellar fracture during kneeling

    Exercise and manual physiotherapy arthritis research trial (EMPART): a multicentre randomised controlled trial

    Get PDF
    BACKGROUND: Osteoarthritis (OA) of the hip is a major cause of functional disability and reduced quality of life. Management options aim to reduce pain and improve or maintain physical functioning. Current evidence indicates that therapeutic exercise has a beneficial but short-term effect on pain and disability, with poor long-term benefit. The optimal content, duration and type of exercise are yet to be ascertained. There has been little scientific investigation into the effectiveness of manual therapy in hip OA. Only one randomized controlled trial (RCT) found greater improvements in patient-perceived improvement and physical function with manual therapy, compared to exercise therapy. METHODS AND DESIGN: An assessor-blind multicentre RCT will be undertaken to compare the effect of a combination of manual therapy and exercise therapy, exercise therapy only, and a waiting-list control on physical function in hip OA. One hundred and fifty people with a diagnosis of hip OA will be recruited and randomly allocated to one of 3 groups: exercise therapy, exercise therapy with manual therapy and a waiting-list control. Subjects in the intervention groups will attend physiotherapy for 6-8 sessions over 8 weeks. Those in the control group will remain on the waiting list until after this time and will then be re-randomised to one of the two intervention groups. Outcome measures will include physical function (WOMAC), pain severity (numerical rating scale), patient perceived change (7-point Likert scale), quality of life (SF-36), mood (hospital anxiety and depression scale), patient satisfaction, physical activity (IPAQ) and physical measures of range of motion, 50-foot walk and repeated sit-to stand tests. DISCUSSION: This RCT will compare the effectiveness of the addition of manual therapy to exercise therapy to exercise therapy only and a waiting-list control in hip OA. A high quality methodology will be used in keeping with CONSORT guidelines. The results will contribute to the evidence base regarding the clinical efficacy for physiotherapy interventions in hip OA

    Oral abstracts 3: RA Treatment and outcomesO13. Validation of jadas in all subtypes of juvenile idiopathic arthritis in a clinical setting

    Get PDF
    Background: Juvenile Arthritis Disease Activity Score (JADAS) is a 4 variable composite disease activity (DA) score for JIA (including active 10, 27 or 71 joint count (AJC), physician global (PGA), parent/child global (PGE) and ESR). The validity of JADAS for all ILAR subtypes in the routine clinical setting is unknown. We investigated the construct validity of JADAS in the clinical setting in all subtypes of JIA through application to a prospective inception cohort of UK children presenting with new onset inflammatory arthritis. Methods: JADAS 10, 27 and 71 were determined for all children in the Childhood Arthritis Prospective Study (CAPS) with complete data available at baseline. Correlation of JADAS 10, 27 and 71 with single DA markers was determined for all subtypes. All correlations were calculated using Spearman's rank statistic. Results: 262/1238 visits had sufficient data for calculation of JADAS (1028 (83%) AJC, 744 (60%) PGA, 843 (68%) PGE and 459 (37%) ESR). Median age at disease onset was 6.0 years (IQR 2.6-10.4) and 64% were female. Correlation between JADAS 10, 27 and 71 approached 1 for all subtypes. Median JADAS 71 was 5.3 (IQR 2.2-10.1) with a significant difference between median JADAS scores between subtypes (p < 0.01). Correlation of JADAS 71 with each single marker of DA was moderate to high in the total cohort (see Table 1). Overall, correlation with AJC, PGA and PGE was moderate to high and correlation with ESR, limited JC, parental pain and CHAQ was low to moderate in the individual subtypes. Correlation coefficients in the extended oligoarticular, rheumatoid factor negative and enthesitis related subtypes were interpreted with caution in view of low numbers. Conclusions: This study adds to the body of evidence supporting the construct validity of JADAS. JADAS correlates with other measures of DA in all ILAR subtypes in the routine clinical setting. Given the high frequency of missing ESR data, it would be useful to assess the validity of JADAS without inclusion of the ESR. Disclosure statement: All authors have declared no conflicts of interest. Table 1Spearman's correlation between JADAS 71 and single markers DA by ILAR subtype ILAR Subtype Systemic onset JIA Persistent oligo JIA Extended oligo JIA Rheumatoid factor neg JIA Rheumatoid factor pos JIA Enthesitis related JIA Psoriatic JIA Undifferentiated JIA Unknown subtype Total cohort Number of children 23 111 12 57 7 9 19 7 17 262 AJC 0.54 0.67 0.53 0.75 0.53 0.34 0.59 0.81 0.37 0.59 PGA 0.63 0.69 0.25 0.73 0.14 0.05 0.50 0.83 0.56 0.64 PGE 0.51 0.68 0.83 0.61 0.41 0.69 0.71 0.9 0.48 0.61 ESR 0.28 0.31 0.35 0.4 0.6 0.85 0.43 0.7 0.5 0.53 Limited 71 JC 0.29 0.51 0.23 0.37 0.14 -0.12 0.4 0.81 0.45 0.41 Parental pain 0.23 0.62 0.03 0.57 0.41 0.69 0.7 0.79 0.42 0.53 Childhood health assessment questionnaire 0.25 0.57 -0.07 0.36 -0.47 0.84 0.37 0.8 0.66 0.4
    • …
    corecore