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a b s t r a c t

Kneeling is required during daily living for many patients after total knee replacement (TKR), yet many
patients have reported that they cannot kneel due to pain, or avoid kneeling due to discomfort, which
critically impacts quality of life and perceived success of the TKR procedure. The objective of this study
was to evaluate the effect of component design on patellofemoral (PF) mechanics during a kneeling
activity. A computational model to predict natural and implanted PF kinematics and bone strains after
kneeling was developed and kinematics were validated with experimental cadaveric studies. PF joint
kinematics and patellar bone strains were compared for implants with dome, medialized dome, and
anatomic components. Due to the less conforming nature of the designs, change in sagittal plane tilt as a
result of kneeling at 901 knee flexion was approximately twice as large for the medialized-dome and
dome implants as the natural case or anatomic implant, which may result in additional stretching of the
quadriceps. All implanted cases resulted in substantial increases in bone strains compared with the
natural knee, but increased strains in different regions. The anatomic patella demonstrated increased
strains inferiorly, while the dome and medialized dome showed increases centrally. An understanding of
the effect of implant design on patellar mechanics during kneeling may ultimately provide guidance to
component designs that reduces the likelihood of knee pain and patellar fracture during kneeling.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Kneeling after total knee replacement (TKR) has frequently
been cited as a limiting activity for patients (Weiss et al., 2002;
Noble et al., 2005). Many patients have reported that they cannot
kneel due to pain, or avoid kneeling due to discomfort (Shafi et al.,
2005; Hassaballa et al., 2002; Nijs et al., 2006; Palmer et al., 2002).
For many TKR patients, kneeling is of particular cultural relevance,
or is a requirement of their daily activities (praying, gardening). As
a result, the ability or lack of ability to kneel without discomfort
critically impacts quality of life and perceived success of the TKR
procedure (Weiss et al., 2002).

While there are a variety of potential sources of knee pain
during kneeling, including scar position (Nijs et al., 2006; Schai
et al., 1999), the patellar bone contains numerous pain-sensing
mechanoreceptors (Wojtys et al., 1990, McDougall, 2006), and is a
likely contributor to anterior knee pain. During kneeling, the
ground reaction force on the tibial tuberosity and/or patella causes
a posteriorly-directed shear force on the tibia and compressive

force on the patella (Incavo et al., 2004; Goldstein et al., 2007).
After TKR, patellofemoral conformity, patellar tracking and strains
are significantly altered from the native joint. Prior TKR studies
have reported bone strains in resected patellae which are sub-
stantially higher than the natural knee (McLain and Barger, 1986;
Reuben et al., 1991; Lie et al., 2005; Wulff and Incavo, 2000;
Fitzpatrick et al., 2011), with resected patellae being more vulner-
able to fracture due to sagittal plane bending in deep flexion,
particularly in thinner patellae (Reuben et al., 1991). A high flexion,
high patellofemoral (PF) contact force activity, such as kneeling,
suggests that patients kneeling after TKR may be particularly
susceptible to anterior knee pain and patellar fracture (Windsor
et al., 1989).

A number of clinical studies have attributed PF complications,
including patellar fracture and patellar bone strain, to prosthesis
design (Brick and Scott, 1988; Healy et al., 1995; Theiss et al., 1996;
Meding et al., 2008; McLain and Barger, 1986). Studies which have
investigated the biomechanics of kneeling in TKR knee have
predominantly focused on tibiofemoral (TF) kinematics, evaluating
in vivo six-degree-of-freedom (6-DOF) kinematics through radio-
graphic techniques (Hanson et al., 2007; Hamai et al., 2008; Incavo
et al., 2004; Kanekasu et al., 2004; Coughlin et al., 2007).
A number of cadaveric studies have utilized pressure-sensitive
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film to measure PF or TF contact area and pressure in response to
kneeling, employing a compressive force, in addition to a quad-
riceps load, in order to simulate the loads encountered during
kneeling (Wilkens et al., 2007; Hofer et al., 2011). Other in vitro
studies have measured patellar bone strain using strain gauges
attached to the anterior surface of the patella, but have not
performed these analyses during a kneeling activity (McLain and
Barger, 1986; Wulff and Incavo, 2000; Lie et al., 2005; Reuben
et al., 1991). Computational methods have been used to develop
high flexion models which have been applied to predict ligament
and joint forces but have not been utilized to evaluate knee
mechanics under loading conditions which simulate kneeling
(Yang et al., 2010; Zelle et al., 2011), or to compare component
designs under the high flexion, high PF force loading conditions
representative of a kneeling activity.

The objective of the current study was to evaluate the effect of
component design on patellar mechanics during a kneeling
activity. A computational model to predict PF kinematics and
strains after kneeling was developed and kinematics were vali-
dated against experimental cadaveric studies. A series of compu-
tational models, which included representations of both the native
joint and a variety of TKR designs were compared during a
simulated kneeling activity. PF joint kinematics and patellar bone
strains were compared across multiple specimen-specific finite
element (FE) models. An understanding of the effect of implant
design on patellar mechanics during kneeling may ultimately
provide guidance to component design that reduces the likelihood
of knee pain and patellar fracture during kneeling.

2. Materials and methods

2.1. In-vitro cadaveric testing

A series of in vitro tests, designed to simulate a kneeling activity, were
performed on four cadaveric knee specimens (male; age: 61.8713.8 years; height:
1.7670.08 m; weight: 76.677kg). Each test was initially conducted on the natural
knee, with the skin, joint capsule, knee ligaments and musculature intact.
Subsequently, testing was performed on a posterior-stabilized (PS) TKR knee
system, implanted by an orthopedic surgeon, with two distinct styles of patellar
component, a 3 mm medialized dome and an anatomic design, with a consistent
femoral and tibial geometry.

The femoral and tibial bone of each specimen was transected approximately
20 cm from the joint line, cemented into aluminum fixtures and mounted in a
quasi-static knee rig (QKR) which permitted loading of the quadriceps and contact
with a floor to simulate kneeling (Fig. 1). An aluminum clamp was used to rigidly
attach the rectus femoris (RF) and vastus intermedius (VI) tendons such that they
were actuated along the line-of-action of the femoral shaft. Superior–inferior (S–I)
and anterior–posterior (A–P) translation of the simulated ankle position was
constrained, while other degrees-of-freedom (DOF) were unconstrained. Knee

flexion was achieved through S–I and A–P motion of the simulated hip. The knee
was flexed to 901 TF flexion, while maintaining a vertical femur, until the patella
made contact with the floor, which was represented by a metal plate with
adjustable height. A 90 N load was applied to the quadriceps through free weights
attached to the quadriceps tendon, while a contact force of 180 N between the
patella and the floor was applied as a result of the weight of the fixtures and femur.
The 90 N quadriceps loading counterbalances the weight of the hip sled in the
experimental rig and allows the knee flexion angle to remain static.

An Optotrak 3020 (Northern Digital, Waterloo, Ontario) motion analysis system
was used to track 6-DOF kinematics of the femur, tibia and patella bones
throughout the activity through light emitting diode markers which were rigidly
fixed to each bone. A hand-held digitizer was used to collect location data on each
TKR component and bone surface relative to its respective local coordinate frame in
order to determine component alignment relative to the bone. Magnetic resonance
(MR) images (slice thickness of 1 mm; in-plane resolution of 0.234�0.234) were
obtained for each specimen prior to implantation.

2.2. Finite element model development and kinematic validation

Specimen-specific FE models, which reproduced the in vitro experiment, were
developed in Abaqus/Explicit (SIMULIA, Providence, RI) and based on previous
models validated for kinematic prediction (Baldwin et al., 2009). Geometry of
femoral, tibial and patellar bone and cartilage were segmented from the MR scans
using ScanIP software (Simpleware, Exeter, UK). Size-matched TKR component
geometry was generated from computer-aided-design surfaces obtained from the
manufacturer. Bones and the femoral component were meshed with rigid trian-
gular shell elements, and tibial and patellar components and all articular cartilage
surfaces were meshed with deformable, eight-noded hexahedral elements. Implant
components were positioned under the guidance of an orthopedic surgeon. The
dome was positioned as medial and superior as possible while avoiding overhang.
Implanted models also included a layer of bone cement between the patellar
component and bone which was meshed with hexahedral elements. For the
kinematic validation analyses, bone and the femoral component were modeled
as rigid for computational efficiency. Tibial and patellar components were modeled
as a nonlinear elastic–plastic material (Halloran et al., 2005a, 2005b), while linear
material models were used for bone cement (E¼3400 MPa, v¼0.3) and femoral,
tibial and patellar articular cartilage (E¼12 MPa, v¼0.45). A coefficient of friction of
0.04 was applied between metal–polyethylene articulating surfaces (Halloran et al.,
2005a, 2005b). The patellar tendon, RF and vasti tendons were represented by
deformable hyperelastic membrane elements with fiber-reinforcement, with uni-
axial tension characteristics calibrated to match published experimental measure-
ments (Atkinson et al., 1997; Stäubli et al., 1999). The vasti tendon was separated
into five bundles representing the VI, vastus lateralis longus (VLL), vastus lateralis
obliquus (VLO), vastus medialis longus (VML) and vastus medialis obliquus (VMO)
(Fitzpatrick et al., 2011). Contact was defined between all soft-tissue structures and
relevant bone and articular surfaces to allow wrapping in deep flexion. In order to
directly reproduce the experimental setup, loading in this case was only applied to
the VI bundle of the vasti tendon.

The model was first aligned in the initial position of the kneeling activity based
on the measured positions obtained during cadaveric testing. During the kneeling
simulation, TF kinematics were fully prescribed based on the experimentally
measured kinematics. The patella was kinematically unconstrained, with a 90 N
load applied to the RF and VI bundles of the quadriceps, and a compressive load
matching the experimental loading condition (180 N) applied to the patella via
contact with the floor. 6-DOF PF kinematics were measured in the same manner as
the experiment, and compared to the in vitro data.

Fig. 1. (A) Knee specimen fixed in the quasi-static knee rig; (B) experimental kneeling simulation in the quasi-static knee rig; and (C) computational simulation of the
kneeling experiment.
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2.3. Application and strain predictions for multiple patellae

Utilizing the computational model described above, the boundary conditions were
adapted to better represent the physiological loads applied during kneeling which were
not feasible to implement experimentally (including higher contact load and quadriceps
load, with quadriceps load distributed throughout all vasti bundles). Models were
developed for an additional set of eight specimens (male; age: 67710 years; height:
1.7870.05 m; weight: 83714 kg). In addition to MR images, computed tomography
(CT) images were obtained for each specimen. The CT scans were used to develop
specimen-specific models of the patellar bone with distributed material properties in
order to evaluate strain in the patellar bone. Patellar bone was meshed with hexahedral
elements with material properties developed from the CT data using BoneMat (Taddei
et al., 2007). A linear relationship adopted from the literature (Peng et al., 2006) was
used to correlate Hounsfield units (HU) to apparent density (ρ). The empirical relation-
ship, Young’s Modulus (E)¼1990ρ3.46, was applied to convert bone density to mechan-
ical properties (Keller, 1994). A convergence study was performed on a single specimen
to determine the optimal element size for the patellar bone mesh. Meshes were
generated with average element edge lengths of 1.5, 1.25, 1.0, 0.8 and 0.5 mm. Strain
prediction convergedwith a patellar bone element edge length of 1.0 mm, with the finer
meshes showing differences of less than 3% in predicted highly strained volume, and
this was subsequently used on all models.

The knee was again placed in a 901 TF kneeling position, while the PF joint
remained unconstrained. A muscle load of 550 N was distributed among the
quadriceps bundles according to their physiological cross-sectional area
(Farahmand et al., 1998), while a compressive load of 330 N (12 BW, representing
double-stance kneeling) was applied through the floor.

In addition to the natural knee and two TKR knees evaluated previously, a third
TKR design with a dome-compatible patellar component was also evaluated in this
computational setup.

Patellar bone strain (as a surrogate measure for likelihood of anterior knee pain
and fracture) was predicted from the FE models and compared between natural
and implanted conditions, and also compared between regions (superior, inferior,
medial and lateral quadrants) of the patellar bone. A highly strained bone volume
was used to compare changes in bone strain between conditions (Fitzpatrick et al.,
2011). The highly strained bone volume, representing the bone volume experien-
cing strain above a specific threshold level, is likely a better predictor of bone
failure than a peak strain value, which may occur in a small localized region and
can be highly dependant on mesh construction. A threshold of 0.5% (just below
reported bone yield strain) was applied in the current analysis. In addition to bone
strain, PF contact pressure and area were compared between analyses.

3. Results

Comparing PF kinematics between the experiment and the com-
putational model, maximum differences in PF translations and

rotations were 1.1 mm and 11, respectively, across all four specimens
in both the natural and implanted conditions (Fig. 2). Root mean
square differences were less than 0.65 mm and 0.51 for translations
and rotations, respectively (Table 1). Prior to kneeling, sagittal plane
patellar tilt was significantly greater in all implanted conditions than
the natural case (tilt of 10.274.21, 20.675.21, 24.474.51 and
25.373.91 for natural, anatomic, medialized-dome and dome, respec-
tively). After contact with the floor, sagittal plane patellar tilt was
reduced to 7.972.61, 18.575.21, 19.573.71, 19.673.61 for natural,
anatomic, medialized-dome and dome conditions, respectively. Due to
the less conforming nature of the designs, change in sagittal plane tilt
as a result of kneeling was larger for the medialized-dome and dome
implants than the natural case or anatomic implant (Fig. 3). This
resulted in more inferior contact on the anterior surface of the patella
against the floor for the natural and anatomic designs, compared to
the medialized-dome and dome designs.

As a result of the load on the patella, there was a considerable
increase in both PF contact pressure and area before and after
kneeling (Fig. 4). Due to the compression-dominated loading
condition, minimum principal strains were on the order of 3�
larger than maximum principal strains, and are reported in the
current study. Kneeling resulted in an average of 8.3%, 16.0%, 12.5%
and 13.2% increase in highly strained bone volume in natural,
anatomic, medialized dome and dome conditions, respectively.

Fig. 2. Comparison between experimentally-measured and FE model predicted PF kinematics during kneeling for the natural knee, modified dome and anatomic patellar
components. Shown for the average of all four specimens.

Table 1
Average RMS differences between model and experimental patellofemoral kine-
matics during kneeling for all four specimens.

Kinematic output Kinematic output average RMS
difference7standard deviation (deg)-mm

Natural Anatomic Medialized dome

Flexion 0.2570.07 0.2970.12 0.4270.13
Internal–external rotation 0.1270.01 0.1270.02 0.1170.02
Spin 0.1970.0.3 0.1070.02 0.2170.06
Anterior–posterior translation 0.2770.08 0.0870.01 0.3570.14
Medial–lateral shift 0.1470.02 0.1270.02 0.1570.03
Superior–inferior translation 0.6570.47 0.0570.01 0.3370.12
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Of the three TKR assessed, the medialized dome demonstrated the
lowest bone strain, both before and after kneeling. Highly strained
bone volumes were on average 2.3, 1.8, and 2.1 times higher than
the natural case for anatomic, medialized dome and dome designs,
respectively (Figs. 5 and 6).

Bone strain distribution after kneeling reflected the differences in
patellar contact, and resulted in larger compressive strains centrally in
the natural condition, and inferiorly, medially and laterally in the
implanted cases. The medial and lateral quadrants experienced the
largest highly strained bone volumes across all conditions; this
increased significantly as a result of kneeling for all implanted
conditions, but there was no significant change in the natural
condition. Anatomic and dome components also experienced signifi-
cant increase in bone strain in the inferior portion of the patellar bone
(Table 2).

4. Discussion

Good agreement in PF kinematics between experimental measure-
ments and computational predictions, and appropriate differentiation
between conditions, highlight the applicability of the computational
model as a complementary tool to experimental testing. As in this
study, a limited number of experimental tests may be performed to
provide adequate kinematic validation for the computational model,
and the model can subsequently be employed to perform additional
simulations or modifications to the boundary conditions that would
not be practical experimentally. While it is not possible to provide
experimental data to verify the internal bone strain predictions from
this study, good agreement in kinematics provide confidence in the
boundary conditions being applied in the model. There are several
studies in the literature that have measured anterior surface strain on
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the patella during cadaveric experiments. McLain and Barger (1986)
found that anterior surface strain in the patella was increased up to
three times that of natural controls. Reuben et al. (1991) evaluated
natural and implanted anterior patellar surface strains using a variety
of resection thicknesses and a quadriceps load of up to 600 N at 901s
flexion. They found significant increases in anterior patellar strainwith
resurfacing, with reported strains of over 2500 m strain for an ideal
thickness, and almost 3500 m strain for a thin patellar resection.
A similar study from Lie et al. (2005) found again a significant increase
in strain with resurfacing, with strains up to 1000 m strain on the
anterior surface of the patella with a 500 N quad load at 901 flexion.
Although these studies are limited to the location of the strain gage
and measuring the tensile strains on the patellar surface, the

magnitude is similar to that reported here, in addition to the
substantial increase in strains with resurfacing.

For comparison purposes, the most related previous study
(Fitzpatrick et al., 2011) has shown that the range of predicted strains
is similar to that reached during the deep flexion position during a
squat. Using the same measures, the maximum flexion position
during squat averaged a 10% highly strained volume, with some
specimens over 20%. In the current study, kneeling resulted in an
average over 15% highly strained volume for the three implant types
evaluated, with one over 20%. This could be an indication of why
kneeling is avoided by some patients due to pain.

The largest difference between patellar designs was bone strain
in the inferior portion of the patella between anatomic compo-
nents and medialized-dome and dome components. The anatomic
patella, with sagittal plane tilt closest to the natural condition
prior to kneeling, has the greatest amount of congruency between
femoral and patellar components. As a result of this geometric
constraint, the anatomic component experienced the smallest
reduction in sagittal plane tilt and consequently the anterior
surface of the patella experienced more inferior contact with the
floor, increasing the bending moment and bone strain near the
distal pole of the patella. This result is supported by prior clinical
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Fig. 6. Compressive bone strain before and after kneeling for natural knee and TKR implants, shown for a representative subject.

Table 2
Highly strained bone volume before and after kneeling (%).

Inferior Superior Medial Lateral

Natural 0.0–2.0 0.0–2.9 0.1–4.6 0.3–6.8
Anatomic 1.5–21.4 0.5–1.3 3.1–17.8 7.2–18.1
Medialized-dome 0.2–7.0 0.1–1.0 2.8–20.5 5.4–14.0
Dome 3.4–14.9 1.1–5.1 3.1–16.3 6.0–16.5
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studies from MacCollum et al. (1989), which reported PF compli-
cations in a series of 87 TKR knees with anatomic patellar
components. Five cases of patellar fracture were deemed to be
caused by increased forces in the patella due the shape of the
articulation. In our analysis, an increase in strain in the inferior
region was not seen in medialized-dome and dome designs as the
change in sagittal plane tilt was significantly higher than the
anatomic design, moving the contact between the anterior patella
and the floor more superior, which facilitated loading sharing of
the compressive load between medial, lateral and inferior regions.
While sagittal plane tilt for the dome was similar to the medialized
dome design, the dome experienced higher bone strain as a result
of higher contact pressure due to lack of congruency and smaller
PF contact area.

The sagittal plane tilt that occurs with kneeling may stretch the
extensor mechanism, quadriceps muscle or PF soft-tissues, another
potential source of pain or limitation during kneeling, and it is
therefore assumed that more natural behavior is desirable. The
anatomic component was similar to the natural in this output, with
the dome and medialized dome approximately twice the rotation.

There are a number of notable limitations to the current study.
The study assessed a single style of kneeling – anterior force was
predominately on the patella. Alternative kneeling conditions
could result in shifting of floor contact from the patella to the
tibial tubercle with greater flexion angles. These conditions and
additional flexion angles warrant further investigation, and the
kneeling model described in this study provides an appropriate
platform for further comparative analyses. Variability in tibiofe-
moral kinematics would have some influence on the patellofe-
moral position during kneeling, although it is assumed that this is
a relatively small effect. Although the kinematic predictions were
validated against experimental data, strain predictions were not,
primarily due to the difficulty of determining a strain distribution
experimentally. Evaluating potential for knee pain during kneeling
based on bone strain and sagittal plane tilt is obviously a
simplification given the multi-factorial nature and complexity of
pain responses. While there are a multitude of TKR designs
available, we believe that the three designs evaluated in the
current study are representative of the primary styles of patellar
components (anatomic, medialized dome, dome) that are cur-
rently commercially available. This study has demonstrated the
effect of and tradeoffs associated with selection of current patellar
components, and as none of the current patellar styles have
demonstrated that they are ultimately superior in terms of clinical
performance (Schindler, 2012), highlighted criteria for design
considerations in order to assist future patients with kneeling.
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