275 research outputs found

    Characterizing the Preferences and Values of US Recreational Atlantic Bluefin Tuna Anglers

    Get PDF
    The Atlantic Bluefin Tuna Thunnus thynnus is the target of a recreational fishery along the U.S. East Coast that is thought to be of considerable economic value. In some years, recreational landings have exceeded the sector’s annual subquota due to changes in fish availability, limited predictability of angler effort, and difficulties in realtime monitoring of catch. Understanding the drivers of angler behavior is critical for predicting how effort and harvest may vary as a function of changing fish availability, regulations, or costs. To investigate angler decision making, preferences, and values, we surveyed private recreational anglers from Maine to North Carolina and employed discrete choice experiments to determine how regulatory and nonregulatory trip-specific variables influence trip-taking behavior. A latent class-ranked log it model identified two distinct classes of anglers who exhibited differing preferences in regard to the importance of nonconsumptive aspects of Bluefin Tuna fishing (e.g., catch and release). Income and recent Bluefin Tuna targeting were the primary determinants of class membership, and higher-income anglers who had targeted Bluefin Tuna in the past 5 years were significantly more likely to be in the class that derives substantive benefits from nonconsumptive angling activities. An annual consumer surplus exceeding US$14 million was estimated for the 2015 fishery. We considered potential angler welfare impacts of possible management changes (compensating surplus) and identified a large amount of latent effort currently present in the fishery in the form of consumptive-oriented anglers. As a result, liberalization of harvest regulations could potentially lead to a large influx of effort into the fishery, which could impede the ability of managers to maintain harvest levels within prescribed limits

    Using ecosystem-services assessments to determine trade-offs in ecosystem-based management of marine mammals

    Get PDF
    The goal of ecosystem-based management (EBM) is to support a sustainable and holistic multisectored management approach, and is recognized in a number of international policy frameworks. However, it remains unknown how these goals should be linked to assessments and management plans for marine fauna, such as mammals and fish stocks. It appears particularly challenging to carry out trade-off analyses of various ocean uses without a framework that integrates knowledge of environmental, social, and economic benefits derived from nonstationary marine fauna. We argue this gap can be filled by applying a version of the ecosystem-service approach at the population level of marine fauna. To advance this idea, we used marine mammals as a case study to demonstrate what indicators could operationalize relevant assessments and deliver an evidence base for the presence of ecosystem services and disservices derived from marine mammals. We found indicators covering common ecosystem service categories feasible to apply; examples of indicator data are already available in the literature for several populations. We encourage further exploration of this approach for application to marina fauna and biodiversity management, with the caveat that conceptual tensions related to the use of the ecosystem service concept itself needs to be addressed to ensure acceptance by relevant stakeholders

    Ecosystem services of temporary streams differ between wet and dry phases in regions with contrasting climates and economies

    Get PDF
    1. Temporary streams are dynamic ecosystems in which mosaics of flowing, ponded and dry habitats support high biodiversity of both aquatic and terrestrial species. Species interact within habitats to perform or facilitate processes that vary in response to changing habitat availability. A natural capital approach recognizes that, through such processes, the ‘natural assets’ of all ecosystems deliver services that benefit people. 2. The ecosystem services of temporary streams remain largely unexplored, in particular those provided during ponded and dry phases. In addition, recent characterizations have focused on dryland systems, and it remains unclear how service provision varies among different climatic regions, or between developed and developing economies. 3. We use evidence from interdisciplinary literature to examine the ecosystem services delivered by temporary streams, including the regulating, provisioning and cultural services provided across the continuum from flowing to dry conditions. We focus on service provision during dry phases and wet–dry transitions, across regions with contrasting climates and economic development. 4. Provision of individual services in temporary streams may be reduced, enhanced or changed by surface water loss. Services enhanced by dry phases include provision of higher‐quality subsurface drinking water and unique opportunities for recreation. Shifts between dry and wet phases enable groundwater recharge that mitigates water scarcity, and grant dry‐phase access to sediments deposited during flowing phases. However, the accessibility and thus perceived value of these and other services varies considerably among regions. In addition, accessing provisioning services requires careful management to promote sustainable resource use and avoid ecological degradation. 5. We highlight the need for environmental managers to recognize temporary streams as aquatic–terrestrial ecosystems, and to take actions promoting their diversity within functional socio‐ecological systems that deliver unique service bundles characterized by variability and differing availability in space and time

    Cross-Sector Review of Drivers and Available 3Rs Approaches for Acute Systemic Toxicity Testing

    Get PDF
    Acute systemic toxicity studies are carried out in many sectors in which synthetic chemicals are manufactured or used and are among the most criticized of all toxicology tests on both scientific and ethical grounds. A review of the drivers for acute toxicity testing within the pharmaceutical industry led to a paradigm shift whereby in vivo acute toxicity data are no longer routinely required in advance of human clinical trials. Based on this experience, the following review was undertaken to identify (1) regulatory and scientific drivers for acute toxicity testing in other industrial sectors, (2) activities aimed at replacing, reducing, or refining the use of animals, and (3) recommendations for future work in this area

    Assessment of coastal management options by means of multilayered ecosystem models

    Get PDF
    This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%–28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of coastal management regulation, for instance in the implementation of the European Marine Strategy Framework Directive

    End project report : a research project on improving rural livelihood through community fisheries management, 1 February 2007 - 31st January 2010

    No full text
    The research objectives were to understand and develop a self-sustaining Community Fisheries Management (CFM) model that supports livelihoods improvement; to enhance capacity at provincial level to analyze opportunities and constraints and identify priorities for CFi development; to identify and support CFM networks at community, provincial and national levels; and to share lessons and experiences on CFM livelihoods improvement. Outputs and outcomes of the project are reviewed. Illegal fishing practices in all project sites have significantly decreased, fish conservation is established and protected and ultimately fish stock has increased. As well, collaboration among stakeholders at the local level has been strengthened
    corecore