1,503 research outputs found
Multiwavelength Monitoring of the BL Lacertae Object PKS 2155-304 in May 1994. II. The IUE Campaign
PKS 2155-304, the brightest BL Lac object in the ultraviolet sky, was
monitored with the IUE satellite at ~1 hour time-resolution for ten nearly
uninterrupted days in May 1994. The campaign, which was coordinated with EUVE,
ROSAT, and ASCA monitoring, along with optical and radio observations from the
ground, yielded the largest set of spectra and the richest short time scale
variability information ever gathered for a blazar at UV wavelengths. The
source flared dramatically during the first day, with an increase by a factor
~2.2 in an hour and a half. In subsequent days, the flux maintained a nearly
constant level for ~5 days, then flared with ~35% amplitude for two days. The
same variability was seen in both short- and long-wavelength IUE light curves,
with zero formal lag (~<2 hr), except during the rapid initial flare, when the
variations were not resolved. Spectral index variations were small and not
clearly correlated with flux. The flux variability observed in the present
monitoring is so rapid that for the first time, based on the UV emission alone,
the traditional Delta L/Delta t limit indicating relativistic beaming is
exceeded. The most rapid variations, under the likely assumption of synchrotron
radiation, lead to a lower limit of 1 G on the magnetic field strength in the
UV emitting region. These results are compared with earlier intensive
monitoring of PKS 2155-304 with IUE in November 1991, when the UV flux
variations had completely different characteristics.Comment: 45 pages, Latex, 11 PostScript figures, to appear in The
Astrophysical Journa
Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an Interasma (Global Asthma Association - GAA) and World Allergy Organization (WAO) document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA) and Global Allergy and Asthma European Network (GA2LEN)
Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD) has led INTERASMA (Global Asthma Association) and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA2LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm) are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules) have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled formulations must reflect the physician’s considerations of disease features, phenotype, and response to previous therapy
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
The Cherenkov Telescope Array Large Size Telescope
The two arrays of the Very High Energy gamma-ray observatory Cherenkov
Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with
a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA
to achieve a low-energy threshold of 20 GeV, which is critical for important
studies in astrophysics, astroparticle physics and cosmology. This work
presents the key specifications and performance of the current LST design in
the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
MRI of the lung (3/3)-current applications and future perspectives
BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations
Theory of the NO+CO surface reaction model
We derive a pair approximation (PA) for the NO+CO model with instantaneous
reactions. For both the triangular and square lattices, the PA, derived here
using a simpler approach, yields a phase diagram with an active state for
CO-fractions y in the interval y_1 < y < y_2, with a continuous (discontinuous)
phase transition to a poisoned state at y_1 (y_2). This is in qualitative
agreement with simulation for the triangular lattice, where our theory gives a
rather accurate prediction for y_2. To obtain the correct phase diagram for the
square lattice, i.e., no active state, we reformulate the PA using sublattices.
The (formerly) active regime is then replaced by a poisoned state with broken
symmetry (unequal sub- lattice coverages), as observed recently by Kortluke et
al. [Chem. Phys. Lett. 275, 85 (1997)]. In contrast with their approach, in
which the active state persists, although reduced in extent, we report here the
first qualitatively correct theory of the NO+CO model on the square lattice.
Surface diffusion of nitrogen can lead to an active state in this case. In one
dimension, the PA predicts that diffusion is required for the existence of an
active state.Comment: 15 pages, 9 figure
MRI of the lung (2/3). Why … when … how?
Background
Among the modalities for lung imaging, proton magnetic resonance imaging (MRI) has been the latest to be introduced into clinical practice. Its value to replace X-ray and computed tomography (CT) when radiation exposure or iodinated contrast material is contra-indicated is well acknowledged: i.e. for paediatric patients and pregnant women or for scientific use. One of the reasons why MRI of the lung is still rarely used, except in a few centres, is the lack of consistent protocols customised to clinical needs.
Methods
This article makes non-vendor-specific protocol suggestions for general use with state-of-the-art MRI scanners, based on the available literature and a consensus discussion within a panel of experts experienced in lung MRI.
Results
Various sequences have been successfully tested within scientific or clinical environments. MRI of the lung with appropriate combinations of these sequences comprises morphological and functional imaging aspects in a single examination. It serves in difficult clinical problems encountered in daily routine, such as assessment of the mediastinum and chest wall, and even might challenge molecular imaging techniques in the near future.
Conclusion
This article helps new users to implement appropriate protocols on their own MRI platforms.
Main Messages
• MRI of the lung can be readily performed on state-of-the-art 1.5-T MRI scanners.
• Protocol suggestions based on the available literature facilitate its use for routine
• MRI offers solutions for complicated thoracic masses with atelectasis and chest wall invasion.
• MRI is an option for paediatrics and science when CT is contra-indicate
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
Caveolae in Rabbit Ventricular Myocytes: Distribution and Dynamic Diminution after Cell Isolation
Caveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface membrane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation. In live cells, the patch-clamp technique was used to measure whole-cell plasma membrane capacitance, and in fixed cells, caveolae were quantified by transmission electron microscopy. Changes in cell-surface topology were assessed using scanning electron microscopy. In fixed ventricular myocardium, dual-axis electron tomography was used for three-dimensional reconstruction and analysis of caveolae in situ. The presence and distribution of surface-sarcolemmal caveolae in freshly isolated cells matches that of intact myocardium. With time, the number of surface-sarcolemmal caveolae decreases in isolated cardiomyocytes. This is associated with a gradual increase in whole-cell membrane capacitance. Concurrently, there is a significant increase in area, diameter, and circularity of sub-sarcolemmal mitochondria, indicative of swelling. In addition, electron tomography data from intact heart illustrate the regular presence of caveolae not only at the surface sarcolemma, but also on transverse-tubular membranes in ventricular myocardium. Thus, caveolae are dynamic structures, present both at surface-sarcolemmal and transverse-tubular membranes. After cell isolation, the number of surface-sarcolemmal caveolae decreases significantly within a time frame relevant for single-cell research. The concurrent increase in cell capacitance suggests that membrane incorporation of surface-sarcolemmal caveolae underlies this, but internalization and/or micro-vesicle loss to the extracellular space may also contribute. Given that much of the research into cardiac caveolae-dependent signaling utilizes isolated cells, and since caveolae-dependent pathways matter for a wide range of other study targets, analysis of isolated cell data should take the time post-isolation into account
Plasticity of the Muscle Stem Cell Microenvironment
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes
- …
