199 research outputs found

    Spectroscopic Evidence for the Specific Na+ and K+ Interactions with the Hydrogen-bonded Water Molecules at the Electrolyte Aqueous Solution Surfaces

    Full text link
    Sum frequency generation vibrational spectra of the water molecules at the NaF and KF aqueous solution surfaces showed significantly different spectral features and different concentration dependence. This result is the first direct observation of the cation effects of the simple alkali cations, which have been believed to be depleted from the aqueous surface, on the hydrogen bonding structure of the water molecules at the electrolyte solution surfaces. These observations may provide important clue to understand the fundamental phenomenon of ions at the air/water interface.Comment: 15 pages, 2 figure

    Switchable disposable passive RFID vapour sensors from inkjet printed electronic components integrated with PDMS as a stimulus responsive material

    Get PDF
    A route to cheap and disposable sensors for the chemical sensing market, with potential applications including monitoring of food spoilage, is reported herein. The sensor is the result of the direct integration of a stimuli-responsive material, poly(dimethylsiloxane) (PDMS), with an electronic component. The printing and sintering of colloidal silver ink solutions onto PDMS was optimized to allow the printing of conductive silver feed loops, which are the active sensing component in antennas for passive (battery-free) Radio Frequency Identification (RFID) tags. The response of these devices is related to the degree of swelling of the PDMS, which, in turn, has been shown to be correlated to the Hansen solubility parameters and the vapour pressures of the corresponding volatile organic compounds (VOCs). When exposed to solvent vapour the printed feed loop fractures, increasing resistance and ultimately breaking conductivity, leading to a change in the transmitted power and read range of the wireless device. Remarkably upon removal from the vapour, the fractured feed loops reassemble and become conductive again, making them switchable and “multi-use”. This work paves the way to a fully inkjet printed RFID substrate for vapour detection

    Dynamics of vacuum impregnation of apples: Experimental data and simulation results using a VOF model

    Get PDF
    Vacuum impregnation (VI) of foods can be used to accelerate industrial processes. VI consists of removing the air present in a food by applying vacuum and replacing it with a given solution by recovering the atmospheric pressure. In this work, the goal was to study important parameters in the dynamics of VI and to propose a three-dimensional mathematical model (based on the Volume-of-Fluid model) for predicting the impregnation step in apple samples. An experimental device was built for determining the dynamics of VI. It was verified that the capillary radius that allowed for the best representation of the dynamics of vacuum impregnation were in the order of magnitude of micrometers, values that are in the range reported in the literature. The proposed mathematical model showed excellent predictive ability for three-dimensional simulation. However, for more accurate values, one should determine the parameters with improved accuracy

    First global observations of the mesospheric potassium layer

    Get PDF
    Metal species, produced by meteoric ablation, act as useful tracers of upper atmosphere dynamics and chemistry. Of these meteoric metals, K is an enigma: at extratropical latitudes, limited available lidar data show that the K layer displays a semiannual seasonal variability, rather than the annual pattern seen in other metals such as Na and Fe. Here we present the first near-global K retrieval, where K atom number density profiles are derived from dayglow measurements made by the Optical Spectrograph and Infrared Imager System spectrometer on board the Odin satellite. This robust retrieval produces density profiles with typical layer peak errors of ±15% and a 2 km vertical grid resolution. We demonstrate that these retrieved profiles compare well with available lidar data and show for the first time that the unusual semiannual behavior is near-global in extent. This new data set has wider applications for improving understanding of the K chemistry and of related upper atmosphere processes

    Analysing the Coupled Effects of Compressive and Diffusion Induced Stresses on the Nucleation and Propagation of Circular Coating Blisters in the Presence of Micro-cracks

    Get PDF
    This paper presents the delamination of coating with micro-cracks under compressive residual stress coupled with diffusion induced stress. Micro-cracks in coating provide a passage for corrosive species towards the coating-substrate interface which in turn produces diffusion induced stress in the coating. Micro-cracks contract gradually with increasing compressive residual stress in coating due to thermal expansion mismatch which blocks the species diffusion towards the interface. This behaviour reduces the diffusion induced stress in the coating while the compressive residual stress increases. With further increase in compressive residual stress, micro-cracks reach to the point, where they cannot be constricted any further and a high compressive residual stress causes the coating to buckle away from the substrate resulting in delamination and therefore initiating blistering. Blistering causes the contracted micro-cracks to wide open again which increases diffusion induced stress along with high compressive residual stress. The high resultant stress in coating causes the blister to propagate in an axis-symmetric circular pattern. A two-part theoretical approach has been utilised coupling the thermodynamic concepts with the mechanics concepts. The thermodynamic concepts involve the corrosive species transportation through micro-cracks under increasing compression, eventually causing blistering, while the fracture mechanics concepts are used to treat the blister growth as circular defect propagation. The influences of moduli ratio, thickness ratio, thermal mismatch ratio, poisson’s ratio and interface roughness on blister growth are discussed. Experiment is reported for blistering to allow visualisation of interface and to permit coupled (diffusion and residual) stresses in the coating over a full range of interest. The predictions from model show excellent, quantitative agreement with the experimental results

    A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere

    Get PDF
    The Hotel Payload 2 rocket was launched on January 31st 2008 at 20.14 LT from the Andøya Rocket Range in northern Norway (69.31° N, 16.01° E). Measurements in the 75–105 km region of atomic O, negatively-charged dust, positive ions and electrons with a suite of instruments on the payload were complemented by lidar measurements of atomic Na and temperature from the nearby ALOMAR observatory. The payload passed within 2.58 km of the lidar at an altitude of 90 km. A series of coupled models is used to explore the observations, leading to two significant conclusions. First, the atomic Na layer and the vertical profiles of negatively-charged dust (assumed to be meteoric smoke particles), electrons and positive ions, can be modelled using a self-consistent meteoric input flux. Second, electronic structure calculations and Rice–Ramsperger–Kassel–Markus theory are used to show that even small Fe–Mg–silicates are able to attach electrons rapidly and form stable negatively-charged particles, compared with electron attachment to O2 and O3. This explains the substantial electron depletion between 80 and 90 km, where the presence of atomic O at concentrations in excess of 1010 cm−3 prevents the formation of stable negative ions

    On the Interplay Between Ocean Color Data Quality and Data Quantity: Impacts of Quality Control Flags

    No full text
    Nearly all calibration/validation activities for the satellite ocean color missions have focused on data quality to produce data products of the highest quality (i.e., science quality) for climate-related research. Little attention, however, has been paid to data quantity, particularly on how data quality control during data processing impacts downstream data quality and data quantity. In this letter, we attempt to fill this knowledge gap using measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). For this sensor, the same level-1B data are processed independently using different quality control methods by NASA and NOAA, respectively, allowing for an in-depth evaluation of the interplay between data quantity and quality. The results indicate that the methods to identify stray light and sun glint are the two primary quality control procedures affecting data quantity, where the criteria for flagging pixels “contaminated” by stray light and sun glint may be relaxed in the NASA ocean color data processing to increase data quantity without compromising data quality
    corecore