65 research outputs found

    Millimetre observations of a sub-arcsecond jet from Circinus X-1

    Full text link
    We present results from the first successful millimetre (combined 33 GHz and 35 GHz) observations of the neutron star X-ray binary Circinus X-1, using the Australia Telescope Compact Array. The source was clearly detected in all three observing epochs. We see strong evidence for a periastron flare beginning at MJD 55519.9 \pm 0.04 with estimated peak flux densities of up to 50 mJy and which proceeds to decline over the following four days. We directly resolve jet structures on sub-arcsecond scales. Flux density variability and distance from the core of nearby components suggests recent shock re-energisation, though we are unable to directly connect this with the observed flare. We suggest that, if the emission is powered by an unseen outflow, then a phase delay exists between flare onset and subsequent brightening of nearby components, with flows reaching mildly relativistic velocities. Given resolved structure positions, in comparison to past observations of Cir X-1, we find evidence that jet direction may vary with distance from the core, or the source's precession parameters have changed.Comment: Accepted for publication in MNRA

    Spatially inhomogeneous superconductivity in UTe2

    Get PDF
    Newly-discovered superconductor UTe2_2 is a strong contender for a topological spin-triplet state wherein a multi-component order parameter arises from two nearly-degenerate superconducting states. A key issue is whether both of these states intrinsically exist at ambient pressure. Through thermal expansion and calorimetry, we show that UTe2_2 at ambient conditions exhibits two detectable transitions only in some samples, and the size of the thermal expansion jump at each transition varies when the measurement is performed in different regions of the sample. This result indicates that the two transitions arise from two spatially separated regions that are inhomogeneously mixed throughout the volume of the sample, each with a discrete superconducting transition temperature (Tc_c). Notably, samples with higher Tc_c only show a single transition at ambient pressure. Above 0.3 GPa, however, two transitions are invariably observed in ac calorimetry. Our results not only point to a nearly vertical line in the pressure-temperature phase diagram but also provide a unified scenario for the sample dependence of UTe2_{2}.Comment: 6 pages, 4 figures, includes supplemental information, changed conclusion on the origin of double-transition feature observed in some UTe2 sample

    Radio observations of Circinus X-1 over a complete orbit at an historically faint epoch

    Full text link
    We present results from the first radio observations of a complete orbit (~ 17 days) of the neutron star X-ray binary Circinus X-1 using the Australia Telescope Compact Array Broadband Backend, taken while the system was in an historically faint state. We have captured the rapid rise and decline of a periastron passage flare, with flux densities for 9 days prior to the event stable at ~ 1 mJy at 5.5 GHz and ~ 0.5 mJy at 9 GHz. The highest flux densities of 43.0 +/- 0.5 mJy at 5.5 GHz and 29.9 +/- 0.6 mJy at 9 GHz were measured during the flare's decline (MJD 55206.69) which continues towards pre-flare flux densities over the following 6 days. Imaging of pre-flare data reveals steady structure including two stable components within 15 arc-seconds of the core which we believe may be persistent emission regions within the system's outflows, one of which is likely associated with the system's counter-jet. Unlike past observations carried out in the system's brighter epochs, we observe no significant structural variations within \approx 3 arc-seconds of the core's position. Model subtraction and difference mapping provide evidence for variations slightly further from the core: up to 5" away. If related to the observed core flare, then these variations suggest very high outflow velocities with {\Gamma} > 35, though this can be reduced significantly if we invoke phase delays of at least one orbital period. Interestingly, the strongest structural variations appear to the north west of the core, opposite to the strongest arcsec-scale emission historically. We discuss the implications of this behaviour, including the possibility of precession or a kinked approaching jet.Comment: Accepted for publication in MNRA

    Geomechanical properties of coal macerals; measurements applicable to modelling swelling of coal seams during CO2 sequestration

    Get PDF
    Understanding the mechanical response of coal to CO2 injection is necessary to determine the suitability of a seam for carbon capture and underground storage (CCUS). The bulk elastic properties of a coal or shale, which determine its mechanical response, are controlled by the elastic properties of its individual components, i.e. macerals and minerals. The elastic properties of minerals are relatively well understood, and attempts have been made previously to acquire maceral elastic properties (Young's modulus) by means of nanoindentation. However, due to the resolution of a nanoindent and small size of macerals, the response is likely to be from a combination of macerals composition and minerals. Here atomic force microscopy is used for the first time to give a unique understanding of the local Youngs modulus of individual macerals, with a precision of 10 nm in both immature and mature coals/shale. Alginite, cutinite, inertinite and sporinite macerals are analysed from a samples of cannel coal (rich in cutinite), paper coal (enriched in sporinite), Northumberland coal (higher rank coal, rich in vitrinite and inertinite) and alginite rich New Albany Shale. Initial findings on the New Albany Shale indicate that kerogen isolation is not a suitable preparation technique for atomic force microscopy and as such, no alginite maceral moduli are accurately reported. Therefore results of the coal derived macerals (cutinite, inertinite and sporinite) are included in this study. The results at this length scale indicate that the mean and modal Young's modulus values in all coal macerals is less than 10 GPa. This range is similar to Young's modulus values acquired by nanoindentation within previous studies. A major difference is that the modal modulus values obtained here are significantly lower than the modal values obtained within previous studies. Thermally immature liptinite macerals (cutinite/sporinite) have a lower modal modulus (1.35–2.97GPa) than the inertinites (1.44–3.42 GPa) from the same coal. The modulus response is also non-normally distributed and most likely conforms to a gamma distribution with shape parameter between 1.5 and 2.5. The modal Young's modulus of all macerals increases with maturity, but not at the same rate, whereby the liptinite macerals become stiffer than the inertinites by the dry gas window (1.56 % Ro in Northumberland Coal). Modelling of volumetric strain under CO2 injection indicates an inversely proportionate relationship to Young's modulus, which suggests that differential swelling is more likely to occur in immature coals. It is therefore preferable to target mature coals for CCUS, as the reaction of macerals at higher maturities is more predictable across an entire coal seam

    A very brief description of LOFAR - the Low Frequency Array

    Get PDF
    LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30-240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient buffering makes retrospective imaging of explosive short-term events possible. The scientific focus of LOFAR will initially be on four key science projects (KSPs): 1) detection of the formation of the very first stars and galaxies in the universe during the so-called epoch of reionization by measuring the power spectrum of the neutral hydrogen 21-cm line (Shaver et al. 1999) on the ~5' scale; 2) low-frequency surveys of the sky with of order 10810^8 expected new sources; 3) all-sky monitoring and detection of transient radio sources such as gamma-ray bursts, x-ray binaries, and exo-planets (Farrell et al. 2004); and 4) radio detection of ultra-high energy cosmic rays and neutrinos (Falcke & Gorham 2003) allowing for the first time access to particles beyond 10^21 eV (Scholten et al. 2006). Apart from the KSPs open access for smaller projects is also planned. Here we give a brief description of the telescope.Comment: 2 pages, IAU GA 2006, Highlights of Astronomy, Volume 14, K.A. van der Hucht, e

    Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts

    Get PDF
    Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not included in v1. Accepted for publication in Astronomy & Astrophysic

    Multiwavelength Observations of A0620-00 in Quiescence

    Get PDF
    [Abridged.] We present multiwavelength observations of the black hole binary system, A0620-00. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00. The observed spectrum is flat in the FUV and very faint (with continuum fluxes \simeq 1e - 17 ergs/cm^2/s/A). We compiled the dereddened, broadband spectral energy distribution of A0620-00 and compared it to previous SEDs as well as theoretical models. The SEDs show that the source varies at all wavelengths for which we have multiple samples. Contrary to previous observations, the optical-UV spectrum does not continue to drop to shorter wavelengths, but instead shows a recovery and an increasingly blue spectrum in the FUV. We created an optical-UV spectrum of A0620-00 with the donor star contribution removed. The non-stellar spectrum peaks at \simeq3000 {\deg}A. The peak can be fit with a T=10,000 K blackbody with a small emitting area, probably originating in the hot spot where the accretion stream impacts the outer disk. However, one or more components in addition to the blackbody are needed to fit the FUV upturn and the red optical fluxes in the optical-UV spectrum. By comparing the mass accretion rate determined from the hot spot luminosity to the mean accretion rate inferred from the outburst history, we find that the latter is an order of magnitude smaller than the former, indicating that \sim90% of the accreted mass must be lost from the system if the predictions of the disk instability model and the estimated interoutburst interval are correct. The mass accretion rate at the hot spot is 10^5 the accretion rate at the black hole inferred from the X-ray luminosity. To reconcile these requires that outflows carry away virtually all of the accreted mass, a very low rate of mass transfer from the outer cold disk into the inner hot region, and/or radiatively inefficient accretion.Comment: ApJ, accepte

    Hard-state Accretion Disk Winds from Black Holes: The Revealing Case of MAXI J1820+070

    Get PDF
    We report on a detailed optical spectroscopic follow-up of the black hole (BH) transient MAXI J1820+070 (ASASSN-18ey). The observations cover the main part of the X-ray binary outburst, when the source alternated between hard and soft states following the classical pattern widely seen in other systems. We focus the analysis on the He I emission lines at 5876 and 6678 angstrom, as well as on H alpha. We detect clear accretion disk wind features (P-Cyg profiles and broad emission line wings) in the hard state, both during outburst rise and decay. These are not witnessed during the several months long soft state. However, our data suggest that the visibility of the outflow might be significantly affected by the ionization state of the accretion disk. The terminal velocity of the wind is above similar to 1200 km s(-1), which is similar to outflow velocities derived from (hard-state) optical winds and (soft-state) X-ray winds in other systems. The wind signatures, in particular the P-Cyg profiles, are very shallow, and their detection has only been possible thanks to a combination of source brightness and intense monitoring at very high signal-to-noise. This study indicates that cold, optical winds are most likely a common feature of BH accretion, and therefore, that wind-like outflows are a general mechanism of mass and angular momentum removal operating throughout the entire X-ray binary outburst

    The Death Throes of a Stripped Massive Star: An Eruptive Mass-Loss History Encoded in Pre-Explosion Emission, a Rapidly Rising Luminous Transient, and a Broad-Lined Ic Supernova SN2018gep

    Get PDF
    We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.3 mag/hr) and luminous (M_(g,peak) = −20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The rapid rise to peak bolometric luminosity and blue colors at peak (t_(rise)∼0.5-3 days, L_(bol)≳3×10^(44) erg sec^(−1), g−r = −0.3) resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (T_(eff) ≳ 40,000K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (M_g ∼ M_r ≈ −14mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E_(γ,iso) < 4.9×10^(48) erg, a limit on X-ray emission L_X < 10^(40) erg sec^(−1), and a limit on radio emission νL_ν ≲ 10^(37) erg sec^(−1). Taken together, we find that the data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M⊙) at large radii (3×10^(14)cm) that was ejected in eruptive pre-explosion mass-loss episodes

    A Multiwavelength Study of GRS 1716-249 in Outburst: Constraints on Its System Parameters

    Get PDF
    We present a detailed study of the evolution of the Galactic black hole transient GRS 1716-249 during its 2016-2017 outburst at optical (Las Cumbres Observatory), mid-infrared (Very Large Telescope), near-infrared (Rapid Eye Mount telescope), and ultraviolet (the Neil Gehrels Swift Observatory Ultraviolet/Optical Telescope) wavelengths, along with archival radio and X-ray data. We show that the optical/near-infrared and UV emission of the source mainly originates from a multi-temperature accretion disk, while the mid-infrared and radio emission are dominated by synchrotron emission from a compact jet. The optical/UV flux density is correlated with the X-ray emission when the source is in the hard state, consistent with an X-ray irradiated accretion disk with an additional contribution from the viscous disk during the outburst fade. We find evidence for a weak, but highly variable jet component at mid-infrared wavelengths. We also report the long-term optical light curve of the source and find that the quiescent i'-band magnitude is 21.39 +/- 0.15 mag. Furthermore, we discuss how previous estimates of the system parameters of the source are based on various incorrect assumptions, and so are likely to be inaccurate. By comparing our GRS 1716-249 data set to those of other outbursting black hole X-ray binaries, we find that while GRS 1716-249 shows similar X-ray behavior, it is noticeably optically fainter, if the literature distance of 2.4 kpc is adopted. Using several lines of reasoning, we argue that the source distance is further than previously assumed in the literature, likely within 4-17 kpc, with a most likely range of similar to 4-8 kpc
    corecore