965 research outputs found
Calibration and signal reconstruction in the ATLAS Tile Hadronic calorimeter
International audienceTileCal is the barrel hadronic calorimeter of the ATLAS experiment at LHC/CERN, made of steel and scintillating tiles and read out by optical fibers and photomultiplier tubes. It provides measurements for hadrons, jets and missing transverse energy. The TileCal calibration procedures rely on the performance of dedicated calibration systems: - calibration of the full signal read-out path with movable radioactive 137Cs gamma source; - monitoring of the Photomultiplier tube gains with the laser system; - calibration of the front-end electronic gains with the charge injection system. In this talk we will describe the energy and time calibration procedures used in TileCal to establish the reference detector response and synchronization. We will also discuss the calibration systems performance and the corresponding uncertainties to the energy and timing measurements
Il progetto “ceraNEApolis”: un sistema informativo cartografico delle produzioni ceramiche a Neapolis (IV a.C.-VII d.C.)
In the last few decades, urban archaeology in Naples has contributed to outline the history of the city. The discovery of a great amount of pottery gave information about the daily life of ancient Naples. It was therefore decided to draw up a thematic archaeological map of the ceramics finds to reconstruct their production and distribution from the 4th century B.C. to the 7th century A.D. The project ceraNEApolis consists of a pottery map linked to a bibliographic database, which will be made available online: a working tool for experts, useful to outline the cultural city stratification and to understand the Neapolitan archaeological sites through the material. It is useful in defining the topography of production (workshop, raw materials, and resources), distribution (communication routes, harbour, market), uses and consumption patterns (house, habitat, sacred areas, burials) in the city, even if lacking monumental evidence. It contributes to the reconstruction and analysis of the cultural and urban landscape, taking into account the geomorphological elements and the data contexts even in diachronic and transversal multi-disciplinary perspective. The analysis of some significant cases shows its validity also for potential alternative fruition. The integration of virtual reality systems is a possible extension also for the knowledge, enhancement, communication and use of cultural heritage
Key Ne states identified affecting -ray emission from F in novae
Detection of nuclear-decay  rays provides a sensitive thermometer of
nova nucleosynthesis. The most intense -ray flux is thought to be
annihilation radiation from the  decay of F, which is destroyed
prior to decay by the F(,)O reaction. Estimates of
F production had been uncertain, however, because key near-threshold
levels in the compound nucleus, Ne, had yet to be identified. This
Letter reports the first measurement of the
F(He,)Ne reaction, in which the placement of two
long-sought 3/2 levels is suggested via triton--
coincidences. The precise determination of their resonance energies reduces the
upper limit of the rate by a factor of  at nova temperatures and
reduces the average uncertainty on the nova detection probability by a factor
of 2.1.Comment: 6 pages, 4 figure
New -ray Transitions Observed in Ne with Implications for the O(,)Ne Reaction Rate
The O(,)Ne reaction is responsible for breakout
from the hot CNO cycle in Type I x-ray bursts. Understanding the properties of
resonances between  and 5 MeV in Ne is crucial in the
calculation of this reaction rate. The spins and parities of these states are
well known, with the exception of the 4.14- and 4.20-MeV states, which have
adopted spin-parities of 9/2 and 7/2, respectively. Gamma-ray
transitions from these states were studied using triton--
coincidences from the F(He,)Ne reaction measured
with GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure
Studies) at Argonne National Laboratory. The observed transitions from the
4.14- and 4.20-MeV states provide strong evidence that the  values are
actually 7/2 and 9/2, respectively. These assignments are consistent
with the values in the F mirror nucleus and in contrast to previously
accepted assignments
Development of the (d,n) proton-transfer reaction in inverse kinematics for structure studies
Transfer reactions have provided exciting opportunities to study the
structure of exotic nuclei and are often used to inform studies relating to
nucleosynthesis and applications. In order to benefit from these reactions and
their application to rare ion beams (RIBs) it is necessary to develop the tools
and techniques to perform and analyze the data from reactions performed in
inverse kinematics, that is with targets of light nuclei and heavier beams. We
are continuing to expand the transfer reaction toolbox in preparation for the
next generation of facilities, such as the Facility for Rare Ion Beams (FRIB),
which is scheduled for completion in 2022. An important step in this process is
to perform the (d,n) reaction in inverse kinematics, with analyses that include
Q-value spectra and differential cross sections. In this way, proton-transfer
reactions can be placed on the same level as the more commonly used
neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we
present an overview of the techniques used in (d,p) and (d,n), and some recent
data from (d,n) reactions in inverse kinematics using stable beams of 12C and
16O.Comment: 9 pages, 4 figures, presented at the XXXV Mazurian Lakes Conference
  on Physics, Piaski, Polan
Standalone vertex finding in the ATLAS muon spectrometer
A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
  submitted to European Physical Journal 
First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon
We report the first measurement of coherent elastic neutrino-nucleus
scattering (\cevns) on argon using a liquid argon detector at the Oak Ridge
National Laboratory Spallation Neutron Source. Two independent analyses prefer
\cevns over the background-only null hypothesis with greater than 
significance. The measured cross section, averaged over the incident neutrino
flux, is (2.2  0.7) 10 cm -- consistent with the
standard model prediction. The neutron-number dependence of this result,
together with that from our previous measurement on CsI, confirms the existence
of the \cevns process and provides improved constraints on non-standard
neutrino interactions.Comment: 8 pages, 5 figures with 2 pages, 6 figures supplementary material V3:
  fixes to figs 3,4 V4: fix typo in table 1, V5: replaced missing appendix, V6:
  fix Eq 1, new fig 3, V7 final version, updated with final revision
- …
