5 research outputs found

    ALMA Observations of the Physical and Chemical Conditions in Centaurus A

    Get PDF
    Centaurus A, with its gas-rich elliptical host galaxy, NGC 5128, is the nearest radio galaxy at a distance of 3.8 Mpc. Its proximity allows us to study the interaction between an active galactic nucleus, radio jets, and molecular gas in great detail. We present ALMA observations of low J transitions of three CO isotopologues, HCN, HCO+^{+}, HNC, CN, and CCH toward the inner projected 500 pc of NGC 5128. Our observations resolve physical sizes down to 40 pc. By observing multiple chemical probes, we determine the physical and chemical conditions of the nuclear interstellar medium of NGC 5128. This region contains molecular arms associated with the dust lanes and a circumnuclear disk (CND) interior to the molecular arms. The CND is approximately 400 pc by 200 pc and appears to be chemically distinct from the molecular arms. It is dominated by dense gas tracers while the molecular arms are dominated by 12^{12}CO and its rare isotopologues. The CND has a higher temperature, elevated CN/HCN and HCN/HNC intensity ratios, and much weaker 13^{13}CO and C18^{18}O emission than the molecular arms. This suggests an influence from the AGN on the CND molecular gas. There is also absorption against the AGN with a low velocity complex near the systemic velocity and a high velocity complex shifted by about 60 km s−1^{-1}. We find similar chemical properties between the CND in emission and both the low and high velocity absorption complexes implying that both likely originate from the CND. If the HV complex does originate in the CND, then that gas would correspond to gas falling toward the supermassive black hole

    Australian educational technologies trends 2018

    Get PDF
    Educational Technologies represent the wide range of digital tools used by teachers for teaching, students for learning, and administrators for managing schools. New tools are continually in development and often repurposed for an educational context from other industries. The following technologies have been considered as the five most significant for schools over the next 5 years, along with cost and professional learning requirements

    Radio Continuum Surveys with Square Kilometre Array Pathfinders

    Get PDF
    In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return
    corecore