393 research outputs found

    Modeling the gravitational wave signature of neutron star black hole coalescences: PhenomNSBH

    Get PDF
    Accurate gravitational-wave (GW) signal models exist for black-hole binary (BBH) and neutron-star binary (BNS) systems, which are consistent with all of the published GW observations to date. Detections of a third class of compact-binary systems, neutron-star-black-hole (NSBH) binaries, have not yet been confirmed, but are eagerly awaited in the near future. For NSBH systems, GW models do not exist across the viable parameter space of signals. In this work we present the frequency-domain phenomenological model, PhenomNSBH, for GWs produced by NSBH systems with mass ratios from equal-mass up to 15, spin on the black hole up to a dimensionless spin of χ=0.5|\chi|=0.5, and tidal deformabilities ranging from 0 (the BBH limit) to 5000. We extend previous work on a phenomenological amplitude model for NSBH systems to produce an amplitude model that is parameterized by a single tidal deformability parameter. This amplitude model is combined with an analytic phase model describing tidal corrections. The resulting approximant is accurate enough to be used to measure the properties of NSBH systems for signal-to-noise ratios (SNRs) up to 50, and is compared to publicly-available NSBH numerical-relativity simulations and hybrid waveforms constructed from numerical-relativity simulations and tidal inspiral approximants. For most signals observed by second-generation ground-based detectors within this SNR limit, it will be difficult to use the GW signal alone to distinguish single NSBH systems from either BNSs or BBHs, and therefore to unambiguously identify an NSBH system

    Model of gravitational waves from precessing black-hole binaries through merger and ringdown

    Get PDF
    We present phenompnr, a frequency-domain phenomenological model of the gravitational-wave signal from binary-black-hole mergers that is tuned to numerical relativity (NR) simulations of precessing binaries. In many current waveform models, e.g., the “phenom” and “eobnr” families that have been used extensively to analyse LIGO-Virgo GW observations, analytic approximations are used to add precession effects to models of nonprecessing (aligned-spin) binaries, and it is only the aligned-spin models that are fully tuned to NR results. In phenompnr we incorporate precessing-binary numerical relativity results in two ways: (i) we produce the first numerical relativity-tuned model of the signal-based precession dynamics through merger and ringdown, and (ii) we extend a previous aligned-spin model, phenomd, to include the effects of misaligned spins on the signal in the coprecessing frame. The numerical relativity calibration has been performed on 40 simulations of binaries with mass ratios between 1 ∶ 1 and 1 ∶ 8 , where the larger black hole has a dimensionless spin magnitude of 0.4 or 0.8, and we choose five angles of spin misalignment with the orbital angular momentum. phenompnr has a typical mismatch accuracy within 0.1% up to mass ratio 1 ∶ 4 and within 1% up to mass ratio 1 ∶ 8

    First results from the Solar Orbiter Heavy Ion Sensor

    Get PDF
    Context. Aims. Solar Orbiter launched in February 2020 with the goal of revealing the connections between the Sun’s interior, atmosphere, and the heliosphere. The Solar Orbiter Heavy Ion Sensor (HIS) is a time-of-flight ion mass spectrometer dedicated to measuring heavy ions in the solar wind. Methods. We present an overview of the first measurements of heavy ion composition from HIS, reviewing the methods used to transform the spectra obtained on board into scientific data products and examining two solar wind case studies as well as the statistical properties of the heavy ion composition observed by HIS. We also carried out a comparison with prior measurements of heavy ions at L1. Results. The HIS data set provides the first mass- and charge-resolved heavy ion measurements in the inner heliosphere. Conclusions. These high temporal resolution data have the potential to transform our understanding of the connections between the solar wind and its origin at the Sun, as well as the interaction between the solar wind and the environment around planets, comets, and in the interstellar medium

    Flux rope and dynamics of the heliospheric current sheet Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

    Get PDF
    Context: Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfvénic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ during the month of June 2020. We used the Alfvén-wave turbulence magnetohydrodynamic solar wind model WindPredict-AW and we performed two 3D simulations based on ADAPT solar magnetograms for this period. Results: We show that the dynamic regions measured by both spacecraft are pervaded by flux ropes close to the HCS. These flux ropes are also present in the simulations, forming at the tip of helmet streamers, that is, at the base of the heliospheric current sheet. The formation mechanism involves a pressure-driven instability followed by a fast tearing reconnection process. We further characterize the 3D spatial structure of helmet streamer born flux ropes, which appears in the simulations to be related to the network of quasi-separatrices

    Catalog of precessing black-hole-binary numerical-relativity simulations

    Get PDF
    We present a public catalog of numerical-relativity binary-black-hole simulations. The catalog contains datasets from 80 distinct configurations of precessing binary-black-hole systems, with mass ratios up to m 2 / m 1 = 8 , dimensionless spin magnitudes on the larger black hole up to | → S 2 | / m 2 2 = 0.8 (the small black hole is nonspinning), and a range of five values of spin misalignment for each mass-ratio/spin combination. We discuss the physical properties of the configurations in our catalog, and assess the accuracy of the initial configuration of each simulation and of the gravitational waveforms. We perform a careful analysis of the errors due to the finite resolution of our simulations and the finite distance from the source at which we extract the waveform data and provide a conservative estimate of the mismatch accuracy. We find that the upper limit on the mismatch uncertainty of our waveforms (including multipoles ℓ ≤ 5 ) is 0.4%. In doing this we present a consistent approach to combining mismatch uncertainties from multiple error sources. We compare this release to previous catalogs and discuss how these new simulations complement the existing public datasets. In particular, this is the first catalog to uniformly cover this parameter space of single-spin binaries and there was previously only sparse coverage of the precessing-binary parameter space for mass ratios ≳ 5 . We discuss applications of these new data, and the most urgent directions for future simulation work

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
    corecore