38 research outputs found
ETHNIC PLURALISM, SOCIAL JUSTICE AND INTEGRATION POLICY IN POST CONFLICT RWANDA
Like every war ravaged country, the Republic of Rwanda is reawakening to grapple with the challenges of post-conflict reintegration and transformation. To scholars and observers of the trend, Rwanda is recuperating at a very high speed due to socio-economic reforms and the apparent commitment of the Government of the country to rebuild a new Rwanda from the rubbles of the devastation that greeted the 1994 genocide. Expectedly, the Rwandan government generated laws and codes which govern social interaction – former ‘enemies’ that must co-habit. There is public ban on all divisionism tendencies. In Rwanda there should be no ‘Hutu’, ‘Tutsi’ or ‘Twa’. All are Rwandans. Indeed, there are sanctions against defaulters irrespective of their nationalities. The drive for identity reconstruction is fierce and the government of Rwanda is determined to obliterate the ethnic ideologies which it believes, reinforced the 1994 Genocide against the Tutsi in Rwanda. However, the questions to ask are: will suppression of ethnic identity effectively obliterate natural affinity for group relations and the right to cultural identification and association? How does the government policy against sectarianism help in the reintegration programmes in Rwanda particularly the traditional judicial option called the Gacaca? This paper seeks to address these questions based on the data collected from a field-work conducted in Rwanda in 2011 and from the observations of scholars of ethnicity and the Rwandan Crisis.
 
Influence of fixed-oils in the dispersion of some water-insoluble antimicrobial compounds
Ampicillin trihydrate, salicylic acid and griseofulvin were subjected to interphasal partitioning between an organic and aqueous phases formed from mixtures of sterile fixed-oils and distilled water. The fixed-oils used were groundnut oil, cotton-seed oil, vegetable oil and cod-liver oil. At each of the varying concentrations of the respective antimicrobial compounds, more molecules of each compound were found to have partitioned into organic (oily) phase than the aqueous phase. Based on physico-chemical and susceptibility studies report with Staphylococcus aureus, groundnut oil and cod-liver oil ranked better than cotton-seed oil and vegetable oil oils in their dispersion ability of the drugs. The results support the use of the local fixed-oils as suitable dispersion media in pharmaceutical oil-based preparations and susceptibility testing.African Journal of Biotechnology Vol. 4 (6), pp. 502-505, 200
Development of the ECOSAR P-Band Synthetic Aperture Radar
This paper describes objectives and recent progress on the development of the EcoSAR, a new P-band airborne radar instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. These measurements support science requirements for the study of the carbon cycle and its relationship to climate change. The instrument is scheduled to be completed and flight tested in 2013. Index Terms SAR, Digital Beamforming, Interferometry
Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions
Although satellite-based variables have for long been expected to be key components to a unified and global biodiversity monitoring strategy, a definitive and agreed list of these variables still remains elusive. The growth of interest in biodiversity variables observable from space has been partly underpinned by the development of the essential biodiversity variable (EBV) framework by the Group on Earth Observations – Biodiversity Observation Network, which itself was guided by the process of identifying essential climate variables. This contribution aims to advance the development of a global biodiversity monitoring strategy by updating the previously published definition of EBV, providing a definition of satellite remote sensing (SRS) EBVs and introducing a set of principles that are believed to be necessary if ecologists and space agencies are to agree on a list of EBVs that can be routinely monitored from space. Progress toward the identification of SRS-EBVs will require a clear understanding of what makes a biodiversity variable essential, as well as agreement on who the users of the SRS-EBVs are. Technological and algorithmic developments are rapidly expanding the set of opportunities for SRS in monitoring biodiversity, and so the list of SRS-EBVs is likely to evolve over time. This means that a clear and common platform for data providers, ecologists, environmental managers, policy makers and remote sensing experts to interact and share ideas needs to be identified to support long-term coordinated actions
The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions
In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for the AfriSAR deployment was the common AGBD estimation requirement for the three future spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30,000 km2 of UAVSAR data were collected over 10 key sites and transects. In addition, field measurements of forest structure and biomass were collected in sixteen 1-hectare sized plots. The campaign produced gridded Lidar canopy structure products, gridded aboveground biomass and associated uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric SAR and Tomographic SAR products and field measurements. Our results showcase the types of data products and scientific results expected from the spaceborne Lidar and SAR missions; we also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more applications by the greater scientific community.Additional co-authors: Bryan Blair, Christy Hansen, Yunling Lou, Ralph Dubayah, Scott Hensley, Carlos Silva, John R Poulsen, Nicolas Labrière, Nicolas Barbier, David Kenfack, Memiaghe Herve, Pulchérie Bissiengou, Alfonso Alonso, Ghislain Moussavou, Simon Lewis, Kathleen Hibbar
Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available
Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available