116 research outputs found

    Analyzing consolidation data to predict smear zone characteristics induced by vertical drain installation for soft soil improvement

    Full text link
    In this paper, the effects of variability of smear zone characteristics induced by installation of prefabricated vertical drains on the preloading design are investigated employing analytical and numerical approaches. Conventional radial consolidation theory has been adopted to conduct analytical parametric studies considering variations of smear zone permeability and extent. FLAC 2D finite difference software has been employed to conduct the numerical simulations. The finite difference analyses have been verified using three case studies including two embankments and a large-scale laboratory consolidometer with a central geosynthetic vertical drain. A comprehensive numerical parametric study is conducted to investigate the influence of smear zone permeability and extent on the model predictions. Furthermore, the construction of the trial embankment is recommended as a reliable solution to estimate accurate smear zone properties and minimise the post construction settlement. A back-calculation procedure is employed to determine the minimum required waiting time after construction of the trial embankment to predict the smear zone characteristics precisely. Results of this study indicate that the accurate smear zone permeability and extent can be back-calculated when 30% degree of consolidation is obtained after construction of the trial embankment. © 2014 Techno-Press, Ltd

    Comparison of Coupled Flow-deformation and Drained Analyses for Road Embankments on CMC Improved Ground

    Full text link
    © 2016 The Authors. Published by Elsevier B.V. The use of controlled modulus columns (CMC) is gaining increased popularity in the support of rail and road bridge approach embankments on soft soils. The further columns are driven into the competent firm soils, the further the design will rely on the inclusions to take the bulk of the vertical loads, as they become rigid inclusions. The advantage of this design approach is that it produces increased control over the settlement, but as a result the columns will attract greater loads, including bending moment and shear force in situations where non-uniform loading or ground conditions exist. The load on the composite soil-CMC is uniformly distributed by the upper layer of granular load transfer platform (LTP), which also includes a layer of reinforcement. Finite difference program FLAC3D has been used to numerically simulate an embankment on the improved ground with end-bearing CMC. A geosynthetic reinforcement layer has been simulated using the inbuilt FLAC3D geogrid element. In this paper, a comparison has been made between the drained and coupled flow-deformation analyses. The force in the reinforcement layer, in particular, has been compared for the two analysis approaches. It was found that according to the numerical simulation, the drained analysis provides lower estimates of the settlement, lateral displacement; and therefore, predicts less tension in the geosynthetic layer

    Performance of laterally loaded piles considering soil and interface parameters

    Full text link
    © 2014 Techno-Press, Ltd. To investigate the soil-pile interactive performance under lateral loads, a set of laboratory model tests was conducted on remoulded test bed of soft clay and medium dense sand. Then, a simplified boundary element analysis had been carried out assuming floating pile. In case of soft clay, it has been observed that lateral loads on piles can initiate the formation of a gap, soil heave and the tension crack in the vicinity of the soil surface and the interface, whereas in medium dense sand, a semi-elliptical depression zone can develop. Comparison of test and boundary element results indicates the accuracy of the solution developed. However, in the boundary element analysis, the possible shear stresses likely to be developed at the interface are ignored in order to simplify the existing complex equations. Moreover, it is unable to capture the influence of base restraint in case of a socketed pile. To bridge up this gap and to study the influence of the initial stress state and interface parameters, a field based case-study of laterally-loaded pile in layered soil with socketed tip is explored and modelled using the finite element method. The results of the model have been verified against known field measurements from a case-study. Parametric studies have been conducted to investigate the influence of the coefficient of lateral earth pressure and the interface strength reduction factor on the results of the model

    Installation Effect of Controlled Modulus Columns on Nearby Existing Structures

    Full text link
    © 2016 ASCE. Controlled modulus columns (CMC) ground improvement technique is a novel approach to reduce ground settlement. To install CMC, a rotary displacement auger is used to form a vertical cylindrical cavity, by displacing the surrounding soils laterally, followed by grout injection. While the method reduces spoil generation, excessive lateral soil displacement may damage the adjacent structures and freshly-grouted CMCs. Although there has been growing interest in quantifying such effects, only a handful of studies have been attempted. This paper presents results of a numerical investigation on the CMC installation effect on an existing bridge pile using the three-dimensional finite difference software package FLAC3D. The bridge pile response to the lateral soil movement induced by the CMC installation are presented and discussed

    The effect of combined conventional and modified ultrafiltration on mechanical ventilation and hemodynamic changes in congenital heart surgery

    Get PDF
    Background: Cardiopulmonary bypass is associated with increased fluid accumulation around the heart which influences pulmonary and cardiac diastolic function. The aim of this study was to compare the effects of modified ultrafiltration (MUF) versus conventional ultrafiltration (CUF) on duration of mechanical ventilation and hemodynamic status in children undergoing congenital heart surgery. Materials and Methods: A randomized clinical trial was conducted on 46 pediatric patients undergoing cardiopulmonary bypass throughout their congenital heart surgery. Arteriovenous MUF plus CUF was performed in 23 patients (intervention group) and sole CUF was performed for other 23 patients (control group). In MUF group, arterial cannula was linked to the filter inlet through the arterial line, and for 10 min, 10 ml/kg/min of blood was filtered and returned via cardioplegia line to the right atrium. Different parameters including hemodynamic variables, length of mechanical ventilation, Intensive Care Unit (ICU) stay, and inotrope requirement were compared between the two groups. Results: At immediate post�MUF phase, there was a statistically significant increase in the mean arterial pressure, systolic blood pressure, and diastolic blood pressure (P < 0.05) only in the study group. Furthermore, there was a significant difference in time of mechanical ventilation (P = 0.004) and ICU stay (P = 0.007) between the two groups. Inotropes including milrinone (P = 0.04), epinephrine (P = 0.001), and dobutamine (P = 0.002) were used significantly less frequently for patients in the intervention than the control group. Conclusion: Administration of MUF following surgery improves hemodynamic status of patients and also significantly decreases the duration of mechanical ventilation and inotrope requirement within 48 h after surgery. � 2016 Journal of Research in Medical Sciences

    Exercise training and weight loss, not always a happy marriage: single blind exercise trials in females with diverse BMI

    Get PDF
    Individuals show high variability in body weight responses to exercise training. Expectations and motivation towards effects of exercise on body weight might influence eating behaviour and could conceal regulatory mechanisms. We conducted two single-blind exercise trials (4 weeks (study 1) and 8 weeks (study 2)) with concealed objectives and exclusion of individuals with weight loss intention. Circuit exercise training programs (3 times a week (45-90 min), intensity 50-90% VO2peak, for 4 and 8 weeks) were conducted. 34 females finished the 4 weeks intervention and 36 females the 8 weeks intervention. Overweight/obese (OV/OB) and lean (L) female participants´ weight/body composition responses were assessed and fasting and postprandial appetite hormone levels (PYY, insulin, amylin, leptin, ghrelin) were measured pre and post intervention for understanding potential contribution to individuals’ body weight response to exercise training (study 2). Exercise training in both studies did not lead to a significant reduction of weight/BMI in the participants’ groups, however, lean participants gained muscle mass. Appetite hormones levels were significantly (p<0.05) altered in the OV/OB group affecting fasting (-24%) and postprandial amylin (-14%) levels. Investigation of individuals’ BMI responses using multiple regression analysis revealed that levels of fasting leptin, postprandial amylin increase, and BMI were significant predictors of BMI change explaining about 43% of the variance. In conclusion, tested exercise training did not lead to weight loss in female participants, while a considerable proportion of variance in body weight response to training could be explained by individuals’ appetite hormone levels and BMI

    Association of dietary fiber and depression symptom: A systematic review and meta-analysis of observational studies

    Get PDF
    Background: A potential relationship between depression and the intake of dietary fiber has been hypothesized in several studies. However, no meta-analysis has been conducted so far to explore the association between these two variables. Hence, we designed the present meta-analysis to elucidate the relationship between the intake of dietary fiber and depression. Methods: A comprehensive search was performed using the PubMed/Medline, Scopus, Web of Science and Google Scholar databases to identify any relevant studies published from inception to October 2019. Observational studies (cross-sectional and case-control) were included in the analysis. Results: Pooled analysis from the random-effects model of four case-control studies revealed that the consumption of dietary fiber in patients with depression was significantly lower versus healthy controls (WMD: -1.41 mg/dl, 95 CI: �2.32, �0.51, P = 0.002). No significant heterogeneity was demonstrated among the analyzed studies (I2 = 4.0 , P = 0.37). By pooling 5 effect sizes of cross-sectional studies (with a total of 97,023 subjects), we demonstrated that a higher dietary consumption of fiber was associated with significantly lower odds of depression (OR = 0.76; 95 CI: 0.64, 0.90; P = 0.010), with a low heterogeneity seen among the retrieved studies (I2 = 43.9 ; P = 0.12). Conclusion: An increased intake of total dietary fiber is associated with lower odds of depression. Further studies are needed to evaluate the relationship between the different types of dietary fiber and depression. © 202

    Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning

    Get PDF
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0.71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50.2% exceed this threshold for suitability in at least one 5×5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify

    Global injury morbidity and mortality from 1990 to 2017 : results from the Global Burden of Disease Study 2017

    Get PDF
    Correction:Background Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries. Methods We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs). Findings In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505). Interpretation Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.Peer reviewe
    corecore