714 research outputs found

    Identification and functional analysis of αB-crystallins in Pteromalus puparum

    Get PDF
    Heat shock proteins, including αB-crystallins (CRYAB), are pivotal in cellular defense mechanisms and stress response. This study presents a comprehensive investigation of heat shock proteins (HSPs), with a specific focus on the CRYAB family, within the genome of Pteromalus puparum. The analysis encompasses the identification of these proteins, exploration of their phylogenetic relationships, examination of conserved domains, and evaluation of their response to high temperature conditions. A total of 46 HSPs were identified in the P. puparum genome, and the differential expression of mRNA at 35°C and 25°C drew attention to five genes belonging to the CRYAB family, namely, PpCRYAB-1 to PpCRYAB-5. The conservation level of CRYAB family genes across different species was observed to be relatively modest. Through genome-wide screening of 22 species representing six insect orders, a total of 235 CRYAB proteins were identified, with P. puparum harboring eight CRYAB proteins, indicative of a moderate abundance compared to other species. Intriguingly, evolutionary analysis highlighted PpCRYAB-4 with potentially intricate differentiation in comparison to other members of the CRYAB family. Furthermore, RNA interference (RNAi) results demonstrated significant regulatory effects on adult lifespan under heat stress at 35°C for PpCRYAB-4 and PpCRYAB-5. These findings lay a groundwork for future investigations into stress resistance mechanisms in parasitic wasps, providing fresh insights for the study of insect resilience amidst the backdrop of global climate change

    Research on Protection Scheme of DC Microgrid Integrated with Fault Current Limiting Control Technology

    Get PDF
    [Introduction] With the development of new loads, such as distributed power sources and electric vehicles, DC(Direct Current) microgrids have the advantages of fewer commutation links and lower system losses than AC(Alternating Current) microgrids, and have become the current research hotspot. Due to the small coverage of the DC microgrid and access to a large amount of distributed power sources, the fault current rises quickly with a large amplitude when inter-pole short-circuit fault occurs, making it difficult to achieve differential coordination with traditional overcurrent protection used in AC distribution networks and posing a great challenge to fault localization. [Method] Therefore, in response to the characteristics of fault current in DC microgrids, the method for designing overcurrent protection setting value based on the precise control value of fault current through the integration of current limiting and protection was proposed. Combined with the reasonable capacity design of each branch, it can easily achieve differential coordination and accurately locate faults. [Result] A corresponding DC microgrid model is built on the PSCAD/EMTDC simulation platform. The proposed protection scheme is simulated and verified, and the result shows that the scheme can correctly locate the fault point and quickly remove the fault. [Conclusion] The proposed protection scheme can ensure the selectivity of overcurrent, which verifies the rationality of the scheme

    Double sequential encrypted targeting sequence: A new concept for bone cancer treatment

    Get PDF
    The selective transportation of therapeutic agents to tumoral cells is usually achieved by their conjugation with targeting moieties able to recognize these cells. Unfortunately, simple and static targeting systems usually show selectivity lacks. Herein, double sequential encrypted targeting system is proposed as stimuliresponsive targeting analogue for selectivity enhancement. The system is able to recognize diseased bone tissue in first place, and once there, a hidden secondary targeting group is activated by the presence of an enzyme overproduced in the malignant tissue (cathepsin K), triggering the recognition of diseased cells. Transporting the cell targeting agent in a hidden conformation which contains a high selective tissular primary targeting, could avoid not only its binding to similar cell receptors but also the apparition of the binding-site barrier effect, which can enhance the penetration of the therapeutic agent within the affected zone. This strategy could be applied not only to conjugate drugs but also to drug loaded nanocarriers in order to improve the efficiency for bone cancer treatments

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression

    Nonrandom processes maintain diversity in tropical forests

    Get PDF
    An ecological community\u27s species diversity tends to erode through time as a result of stochastic extinction, competitive exclusion, and unstable host-enemy dynamics. This erosion of diversity can be prevented over the short term if recruits are highly diverse as a result of preferential recruitment of rare species or, alternatively, if rare species survive preferentially, which increases diversity as the ages of the individuals increase. Here, we present census data from seven New and Old World tropical forest dynamics plots that all show the latter pattern. Within local areas, the trees that survived were as a group more diverse than those that were recruited or those that died. The larger (and therefore on average older) survivors were more diverse within local areas than the smaller survivors. When species were rare in a local area, they had a higher survival rate than when they were common, resulting in enrichment for rare species and increasing diversity with age and size class in these complex ecosystems

    Time-restricted feeding’s effect on overweight and obese patients with chronic kidney disease stages 3-4: A prospective non-randomized control pilot study

    Get PDF
    BackgroundTime-restricted feeding (TRF) has become a popular weight loss method in recent years. It is widely used in the nutritional treatment of normal obese people and obese people with chronic diseases such as diabetes mellitus and hypertension, and has shown many benefits. However, most TRF studies have excluded chronic kidney disease (CKD) patients, resulting in a lack of sufficient evidence-based practice for the efficacy and safety of TRF therapy for CKD. Therefore, we explore the efficacy and safety of TRF in overweight and obese patients with moderate-to-severe stage CKD through this pilot study, and observe patient compliance to assess the feasibility of the therapy.MethodsThis is a prospective, non-randomized controlled short-term clinical trial. We recruited overweight and obese patients with CKD stages 3-4 from an outpatient clinic and assigned them to either a TRF group or a control diet (CD) group according to their preferences. Changes in renal function, other biochemical data, anthropometric parameters, gut microbiota, and adverse events were measured before the intervention and after 12 weeks.ResultsThe change in estimated glomerular filtration rate (eGFR) before and after intervention in the TRF group (Δ = 3.1 ± 5.3 ml/min/1.73m2) showed significant improvement compared with the CD group (Δ = -0.8 ± 4.4 ml/min/1.73m2). Furthermore, the TRF group had a significant decrease in uric acid (Δ = -70.8 ± 124.2 μmol/L), but an increase in total protein (Δ = 1.7 ± 2.5 g/L), while the changes were inconsistent for inflammatory factors. In addition, the TRF group showed a significant decrease in body weight (Δ = -2.8 ± 2.9 kg) compared to the CD group, and body composition indicated the same decrease in body fat mass, fat free mass and body water. Additionally, TRF shifted the gut microbiota in a positive direction.ConclusionPreliminary studies suggest that overweight and obese patients with moderate-to-severe CKD with weight loss needs, and who were under strict medical supervision by healthcare professionals, performed TRF with good compliance. They did so without apparent adverse events, and showed efficacy in protecting renal function. These results may be due to changes in body composition and alterations in gut microbiota

    Shape-Controlled Synthesis of ZnS Nanostructures: A Simple and Rapid Method for One-Dimensional Materials by Plasma

    Get PDF
    In this paper, ZnS one-dimensional (1D) nanostructures including tetrapods, nanorods, nanobelts, and nanoslices were selectively synthesized by using RF thermal plasma in a wall-free way. The feeding rate and the cooling flow rate were the critical experimental parameters for defining the morphology of the final products. The detailed structures of synthesized ZnS nanostructures were studied through transmission electron microscope, X-ray diffraction, and high-resolution transmission electron microscope. A collision-controlled growth mechanism was proposed to explain the growth process that occurred exclusively in the gas current by a flowing way, and the whole process was completed in several seconds. In conclusion, the present synthetic route provides a facile way to synthesize ZnS and other hexagonal-structured 1D nanostructures in a rapid and scalable way
    • …
    corecore