44 research outputs found

    Differential change in cortical and hippocampal monoamines, and behavioral patterns in streptozotocin-induced type 1 diabetes rats

    Get PDF
    Objective(s): Diabetes mellitus (DM) is a widespread metabolic disorder worldwide. Clinical physicians have found diabetic patients have mild to middle cognitive dysfunction and an alteration of brain monoaminergic function. This study explored the change in various patterns of behavioral models and brain monoamine function under streptozotocin (STZ)-induced type 1 diabetes.Materials and Methods: We established a type 1 DM model via intravenous injection with STZ (65 mg/kg) in rats. Three weeks after the STZ injection, various behavioral measurements including the inhibitory avoidance test, active avoidance test and Morris water maze were conducted. Finally, all rats were dissected and the concentrations of monoamines and their metabolites in cortex and hippocampus were measured by high performance liquid chromatography with electrochemical detection.Results: We found that STZ induced type 1 diabetes (hyperglycemia and lack of insulin) in rats. STZ-induced diabetic rats had cognitive impairment in acquisition sessions and long-term retention of the active avoidance test. STZ-induced diabetic rats also had cognitive impairment in spatial learning, reference and working memory of the Morris water maze. STZ significantly reduced concentrations of norepinephrine (NE) in the cortex and dopamine (DA) in the hippocampus, but increased concentrations of DA and serotonin (5-HT) in the cortex 35 days after injection. The concentration of 5-HT in the hippocampus was also significantly increased.Conclusion: The data suggested that this cognitive impairment after a short-term period of STZ injection might be related to cortical NE dysfunction, differential alteration of cortical and hippocampal DA function, and brain 5-HT hyperfunction

    A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese

    Get PDF
    To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (P = 8.54×10−10; odds ratio [OR] = 1.57; 95% confidence interval [CI] = 1.36–1.82), and serine racemase (SRR) (P = 3.06×10−9; OR = 1.28; 95% CI = 1.18–1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 (P = 9.65×10−10; OR = 1.29, 95% CI = 1.19–1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    The Physics of the B Factories

    Get PDF

    p

    No full text

    Optimized LED-Integrated Agricultural Facilities for Adjusting the Growth of Water Bamboo (Zizania latifolia)

    No full text
    We investigated a light emitting diode (LED) lighting system applied to a water bamboo field during winter season at night, and the results indicated that this lighting system can prevent the stunting of water bamboo leaves and further assist its growth. Compared with previous LED systems, in which the LED bulbs were placed directly above water bamboo leaves, our LED lighting system presents the benefit of easy handling during harvest. To prevent the inhomogeneous coverage of LED light patterns, a new design of LED lenses was also incorporated

    Schizandrin Protects Primary Rat Cortical Cell Cultures from Glutamate-Induced Apoptosis by Inhibiting Activation of the MAPK Family and the Mitochondria Dependent Pathway

    No full text
    Glutamate-induced excitotoxicity has been implicated in a variety of neuronal degenerative disorders. In the present study, we investigated the possible neuroprotective effects of schizandrin against apoptosis of primary cultured rat cortical cells induced by glutamate. Glutamate (10 μM) administered for 24 h decreased the expression of Bcl-2 and Bcl-XL protein, whereas increased the expression of Bax, Bak, apoptosis inducing factor (AIF), endonuclease G (Nodo G) and endoplasmic reticulum (ER) stress of caspase-12. Pretreatment with schizandrin (100 μM) before glutamate treatment increased the Bcl-XL and Bcl-2 expression and decreased Bax, Bak, AIF, Nodo G and caspase-12 compared with those only treated with glutamate. Furthermore, glutamate-induced phosphorylation of JNK, p38 and ERK mitogen-activated protein kinases (MAPK), and these effects were attenuated by schizandrin (100 μM) treatment. These results suggest that schizandrin possesses the neuroprotective effects. The molecular mechanisms of schizandrin against glutamate-induced apoptosis may involve the regulation of Bcl-2 family proteins expression, and ER stress through blocking the activation of JNK, ERK and p38 MAPK
    corecore