159 research outputs found

    Regulatory Feedback Loop of Two phz Gene Clusters through 5â€Č-Untranslated Regions in Pseudomonas sp. M18

    Get PDF
    BACKGROUND: Phenazines are important compounds produced by pseudomonads and other bacteria. Two phz gene clusters called phzA1-G1 and phzA2-G2, respectively, were found in the genome of Pseudomonas sp. M18, an effective biocontrol agent, which is highly homologous to the opportunistic human pathogen P. aeruginosa PAO1, however little is known about the correlation between the expressions of two phz gene clusters. METHODOLOGY/PRINCIPAL FINDINGS: Two chromosomal insertion inactivated mutants for the two gene clusters were constructed respectively and the correlation between the expressions of two phz gene clusters was investigated in strain M18. Phenazine-1-carboxylic acid (PCA) molecules produced from phzA2-G2 gene cluster are able to auto-regulate expression itself and activate the expression of phzA1-G1 gene cluster in a circulated amplification pattern. However, the post-transcriptional expression of phzA1-G1 transcript was blocked principally through 5'-untranslated region (UTR). In contrast, the phzA2-G2 gene cluster was transcribed to a lesser extent and translated efficiently and was negatively regulated by the GacA signal transduction pathway, mainly at a post-transcriptional level. CONCLUSIONS/SIGNIFICANCE: A single molecule, PCA, produced in different quantities by the two phz gene clusters acted as the functional mediator and the two phz gene clusters developed a specific regulatory mechanism which acts through 5'-UTR to transfer a single, but complex bacterial signaling event in Pseudomonas sp. strain M18

    Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Worldwide, acute leukemia is the most common type of childhood cancer. It is particularly common in the Hispanic populations residing in the United States, Costa Rica, and Mexico City. The objective of this study was to determine the incidence of acute leukemia in children who were diagnosed and treated in public hospitals in Mexico City.</p> <p>Methods</p> <p>Included in this study were those children, under 15 years of age and residents of Mexico City, who were diagnosed in 2006 and 2007 with leukemia, as determined by using the International Classification of Childhood Cancer. The average annual incidence rates (AAIR), and the standardized average annual incidence rates (SAAIR) per million children were calculated. We calculated crude, age- and sex-specific incidence rates and adjusted for age by the direct method with the world population as standard. We determined if there were a correlation between the incidence of acute leukemias in the various boroughs of Mexico City and either the number of agricultural hectares, the average number of persons per household, or the municipal human development index for Mexico (used as a reference of socio-economic level).</p> <p>Results</p> <p>Although a total of 610 new cases of leukemia were registered during 2006-2007, only 228 fit the criteria for inclusion in this study. The overall SAAIR was 57.6 per million children (95% CI, 46.9-68.3); acute lymphoblastic leukemia (ALL) was the most frequent type of leukemia, constituting 85.1% of the cases (SAAIR: 49.5 per million), followed by acute myeloblastic leukemia at 12.3% (SAAIR: 6.9 per million), and chronic myeloid leukemia at 1.7% (SAAIR: 0.9 per million). The 1-4 years age group had the highest SAAIR for ALL (77.7 per million). For cases of ALL, 73.2% had precursor B-cell immunophenotype (SAAIR: 35.8 per million) and 12.4% had T-cell immunophenotype (SAAIR 6.3 per million). The peak ages for ALL were 2-6 years and 8-10 years. More than half the children (58.8%) were classified as high risk. There was a positive correlation between the average number of persons per household and the incidence of the pre-B immunophenotype (Pearson's r, 0.789; P = 0.02).</p> <p>Conclusions</p> <p>The frequency of ALL in Mexico City is among the highest in the world, similar to those found for Hispanics in the United States and in Costa Rica.</p

    TGFBR1 Intralocus Epistatic Interaction as a Risk Factor for Colorectal Cancer

    Get PDF
    In colorectal cancer (CRC), an inherited susceptibility risk affects about 35% of patients, whereas high-penetrance germline mutations account for <6% of cases. A considerable proportion of sporadic tumors could be explained by the coinheritance of multiple low-penetrance variants, some of which are common. We assessed the susceptibility to CRC conferred by genetic variants at the TGFBR1 locus. We analyzed 14 polymorphisms and the allele-specific expression (ASE) of TGFBR1 in 1025 individuals from the Spanish population. A case-control study was undertaken with 504 controls and 521 patients with sporadic CRC. Fourteen polymorphisms located at the TGFBR1 locus were genotyped with the iPLEX Gold (MassARRAY-Sequenom) technology. Descriptive analyses of the polymorphisms and haplotypes and association studies were performed with the SNPator workpackage. No relevant associations were detected between individual polymorphisms or haplotypes and the risk of CRC. The TGFBR1*9A/6A polymorphism was used for the ASE analysis. Heterozygous individuals were analyzed for ASE by fragment analysis using cDNA from normal tissue. The relative level of allelic expression was extrapolated from a standard curve. The cutoff value was calculated with Youden's index. ASE was found in 25.4% of patients and 16.4% of controls. Considering both bimodal and continuous types of distribution, no significant differences between the ASE values of patients and controls were identified. Interestingly, a combined analysis of the polymorphisms and ASE for the association with CRC occurrence revealed that ASE-positive individuals carrying one of the most common haplotypes (H2: 20.7%) showed remarkable susceptibility to CRC (RR: 5.25; 95% CI: 2.547–5.250; p<0.001) with a synergy factor of 3.7. In our study, 54.1% of sporadic CRC cases were attributable to the coinheritance of the H2 haplotype and TGFBR1 ASE. These results support the hypothesis that the allelic architecture of cancer genes, rather than individual polymorphisms, more accurately defines the CRC risk

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    In vivo isolated kidney perfusion with tumour necrosis factor α (TNF-α) in tumour-bearing rats

    Get PDF
    Isolated perfusion of the extremities with high-dose tumour necrosis factor α (TNF-α) plus melphalan leads to dramatic tumour response in patients with irresectable soft tissue sarcoma or multiple melanoma in transit metastases. We developed in vivo isolated organ perfusion models to determine whether similar tumour responses in solid organ tumours can be obtained with this regimen. Here, we describe the technique of isolated kidney perfusion. We studied the feasibility of a perfusion with TNF-α and assessed its anti-tumour effects in tumour models differing in tumour vasculature. The maximal tolerated dose (MTD) proved to be only 1 Όg TNF-α. Higher doses appeared to induce renal failure and a secondary cytokine release with fatal respiratory and septic shock-like symptoms. In vitro, the combination of TNF-α and melphalan did not result in a synergistic growth-inhibiting effect on CC 531 colon adenocarcinoma cells, whereas an additive effect was observed on osteosarcoma ROS-1 cells. In vivo isolated kidney perfusion, with TNF-α alone or in combination with melphalan, did not result in a significant anti-tumour response in either tumour model in a subrenal capsule assay. We conclude that, because of the susceptibility of the kidney to perfusion with TNF-α, the minimal threshold concentration of TNF-α to exert its anti-tumour effects was not reached. The applicability of TNF-α in isolated kidney perfusion for human tumours seems, therefore, questionable. © 1999 Cancer Research Campaig

    Evidence for modulation of pericryptal sheath myofibroblasts in rat descending colon by Transforming Growth Factor ÎČ and Angiotensin II.

    Get PDF
    BACKGROUND: Absorption of water and Na(+) in descending colonic crypts is dependent on the barrier function of the surrounding myofibroblastic pericryptal sheath. Here the effects of high and low Na(+) diets and exposure to whole body ionising radiation on the growth and activation of the descending colonic pericryptal myofibroblasts are evaluated. In addition the effect of a post-irradiation treatment with the angiotensin converting enzyme inhibitor Captopril was investigated. METHODS: The levels of Angiotensin II type 1 receptor (AT1), ACE, collagen type IV, transforming growth factor-ÎČ type 1 receptor (TGF-ÎČR1), OB cadherin and α-smooth muscle actin in both descending colon and caecum were evaluated, using immunocytochemistry and confocal microscopy, in rats fed on high and low Na(+) diets (LS). These parameters were also determined during 3 months post-irradiation with 8Gy from a (60)Co source in the presence and absence of the angiotensin converting enzyme inhibitor, Captopril. RESULTS: Increases in AT1 receptor (135.6% ± 18.3, P < 0.001); ACE (70.1% ± 13.1, P < 0.001); collagen type IV (49.6% ± 15.3, P < 0.001); TGF-ÎČ1 receptors (291.0% ± 26.5, P < 0.001); OB-cadherin (26.3% ± 13.8, P < 0.05) and α-smooth muscle actin (82.5% ± 12.4, P < 0.001) were observed in the pericryptal myofibroblasts of the descending colon after LS diet. There are also increases in AT1 receptor and TGF-ÎČ1 receptor, smooth muscle actin and collagen type IV after irradiation. Captopril reduced all these effects of irradiation on the pericryptal sheath and also decreased the amount of collagen and smooth muscle actin in control rats (P < 0.001). CONCLUSIONS: These results demonstrate an activation of descending colonic myofibroblasts to trophic stimuli, or irradiation, which can be attenuated by Captopril, indicative of local trophic control by angiotensin II and TGF-ÎČ release

    The Neglected Intrinsic Resistome of Bacterial Pathogens

    Get PDF
    Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature

    Radiotherapy Suppresses Angiogenesis in Mice through TGF-ÎČRI/ALK5-Dependent Inhibition of Endothelial Cell Sprouting

    Get PDF
    BACKGROUND: Radiotherapy is widely used to treat cancer. While rapidly dividing cancer cells are naturally considered the main target of radiotherapy, emerging evidence indicates that radiotherapy also affects endothelial cell functions, and possibly also their angiogenic capacity. In spite of its clinical relevance, such putative anti-angiogenic effect of radiotherapy has not been thoroughly characterized. We have investigated the effect of ionizing radiation on angiogenesis using in vivo, ex vivo and in vitro experimental models in combination with genetic and pharmacological interventions. PRINCIPAL FINDINGS: Here we show that high doses ionizing radiation locally suppressed VEGF- and FGF-2-induced Matrigel plug angiogenesis in mice in vivo and prevented endothelial cell sprouting from mouse aortic rings following in vivo or ex vivo irradiation. Quiescent human endothelial cells exposed to ionizing radiation in vitro resisted apoptosis, demonstrated reduced sprouting, migration and proliferation capacities, showed enhanced adhesion to matrix proteins, and underwent premature senescence. Irradiation induced the expression of P53 and P21 proteins in endothelial cells, but p53 or p21 deficiency and P21 silencing did not prevent radiation-induced inhibition of sprouting or proliferation. Radiation induced Smad-2 phosphorylation in skin in vivo and in endothelial cells in vitro. Inhibition of the TGF-beta type I receptor ALK5 rescued deficient endothelial cell sprouting and migration but not proliferation in vitro and restored defective Matrigel plug angiogenesis in irradiated mice in vivo. ALK5 inhibition, however, did not rescue deficient proliferation. Notch signaling, known to hinder angiogenesis, was activated by radiation but its inhibition, alone or in combination with ALK5 inhibition, did not rescue suppressed proliferation. CONCLUSIONS: These results demonstrate that irradiation of quiescent endothelial cells suppresses subsequent angiogenesis and that ALK5 is a critical mediator of this suppression. These results extend our understanding of radiotherapy-induced endothelial dysfunctions, relevant to both therapeutic and unwanted effects of radiotherapy

    A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cetacea (dolphins, porpoises, and whales) is a clade of aquatic species that includes the most massive, deepest diving, and largest brained mammals. Understanding the temporal pattern of diversification in the group as well as the evolution of cetacean anatomy and behavior requires a robust and well-resolved phylogenetic hypothesis. Although a large body of molecular data has accumulated over the past 20 years, DNA sequences of cetaceans have not been directly integrated with the rich, cetacean fossil record to reconcile discrepancies among molecular and morphological characters.</p> <p>Results</p> <p>We combined new nuclear DNA sequences, including segments of six genes (~2800 basepairs) from the functionally extinct Yangtze River dolphin, with an expanded morphological matrix and published genomic data. Diverse analyses of these data resolved the relationships of 74 taxa that represent all extant families and 11 extinct families of Cetacea. The resulting supermatrix (61,155 characters) and its sub-partitions were analyzed using parsimony methods. Bayesian and maximum likelihood (ML) searches were conducted on the molecular partition, and a molecular scaffold obtained from these searches was used to constrain a parsimony search of the morphological partition. Based on analysis of the supermatrix and model-based analyses of the molecular partition, we found overwhelming support for 15 extant clades. When extinct taxa are included, we recovered trees that are significantly correlated with the fossil record. These trees were used to reconstruct the timing of cetacean diversification and the evolution of characters shared by "river dolphins," a non-monophyletic set of species according to all of our phylogenetic analyses.</p> <p>Conclusions</p> <p>The parsimony analysis of the supermatrix and the analysis of morphology constrained to fit the ML/Bayesian molecular tree yielded broadly congruent phylogenetic hypotheses. In trees from both analyses, all Oligocene taxa included in our study fell outside crown Mysticeti and crown Odontoceti, suggesting that these two clades radiated in the late Oligocene or later, contra some recent molecular clock studies. Our trees also imply that many character states shared by river dolphins evolved in their oceanic ancestors, contradicting the hypothesis that these characters are convergent adaptations to fluvial habitats.</p
    • 

    corecore