546 research outputs found
How Difficult Is It to Fold a Knotted Protein? In Silico Insights from Surface-Tethered Folding Experiments
We explore the effect of surface tethering on the folding process of a lattice protein that contains a trefoil knot in its native structure via Monte Carlo simulations. We show that the outcome of the tethering experiment depends critically on which terminus is used to link the protein to a chemically inert plane. In particular, if surface tethering occurs at the bead that is closer to the knotted core the folding rate becomes exceedingly slow and the protein is not able to find the native structure in all the attempted folding trajectories. Such low folding efficiency is also apparent from the analysis of the probability of knot formation, pknot, as a function of nativeness. Indeed, pknot increases abruptly from ~0 to ~1 only when the protein has more than 80% of its native contacts formed, showing that a highly compact conformation must undergo substantial structural re-arrangement in order to get effectively knotted. When the protein is surface tethered by the bead that is placed more far away from the knotted core pknot is higher than in the other folding setups (including folding in the bulk), especially if conformations are highly native-like. These results show that the mobility of the terminus closest to the knotted core is critical for successful folding of trefoil proteins, which, in turn, highlights the importance of a knotting mechanism that is based on a threading movement of this terminus through a knotting loop. The results reported here predict that if this movement is blocked, knotting occurs via an alternative mechanism, the so-called spindle mechanism, which is prone to misfolding. Our simulations show that in the three considered folding setups the formation of the knot is typically a late event in the folding process. We discuss the implications of our findings for co-translational folding of knotted trefoils. © 2012 Soler, Faísca
Effects of Knots on Protein Folding Properties
This work explores the impact of knots, knot depth and motif of the threading terminus in protein folding properties (kinetics, thermodynamics and mechanism) via extensive Monte Carlo simulations of lattice models. A knotted backbone has no effect on protein thermodynamic stability but it may affect key aspects of folding kinetics. In this regard, we found clear evidence for a functional advantage of knots: knots enhance kinetic stability because a knotted protein unfolds at a distinctively slower rate than its unknotted counterpart. However, an increase in knot deepness does not necessarily lead to more effective changes in folding properties. In this regard, a terminus with a non-trivial conformation (e.g. hairpin) can have a more dramatic effect in enhancing kinetic stability than knot depth. Nevertheless, our results suggest that the probability of the denatured ensemble to keep knotted is higher for proteins with deeper knots, indicating that knot depth plays a role in determining the topology of the denatured state. Refolding simulations starting from denatured knotted conformations show that not every knot is able to nucleate folding and further indicate that the formation of the knotting loop is a key event in the folding of knotted trefoils. They also show that there are specific native contacts within the knotted core that are crucial to keep a native knotting loop in denatured conformations which otherwise have no detectable structure. The study of the knotting mechanism reveals that the threading of the knotting loop generally occurs towards late folding in conformations that exhibit a significant degree of structural consolidation. © 2013 Soler, Faísca
Folding of small proteins: A matter of geometry?
We review some of our recent results obtained within the scope of simple
lattice models and Monte Carlo simulations that illustrate the role of native
geometry in the folding kinetics of two state folders.Comment: To appear in Molecular Physic
MF Calculator: A Web-Based Application for Analyzing Similarity
This paper presents the metric-frequency calculator (MF Calculator), an online application to analyze similarity. The MF Calculator implements a metric-frequency similarity algorithm for the quantitative assessment of similarity in ill-structured data sets. It is widely applicable as it can be used with nominal, ordinal, or interval data when there is little prior control over the variables to be observed regarding number or content. The MF Calculator generates a proximity matrix in CSV, XML or DOC format that can be used as input to traditional statistical techniques such as hierarchical clustering, additive trees, or multidimensional scaling. The MF Calculator also displays a graphical representation of outputs using additive similarity trees. A simulated example illustrates the implementation of the MF calculator. An additional example with real data is presented, in order to illustrate the potential of combining the MF Calculator with cluster analysis. The MF Calculator is a user-friendly tool available free of charge. It can be accessed from http : //mfcalculator.celiasales.org/Calculator.aspx, and it can be used by non-experts from a wide range of social sciences.info:eu-repo/semantics/publishedVersio
Nucleation phenomena in protein folding: The modulating role of protein sequence
For the vast majority of naturally occurring, small, single domain proteins
folding is often described as a two-state process that lacks detectable
intermediates. This observation has often been rationalized on the basis of a
nucleation mechanism for protein folding whose basic premise is the idea that
after completion of a specific set of contacts forming the so-called folding
nucleus the native state is achieved promptly. Here we propose a methodology to
identify folding nuclei in small lattice polymers and apply it to the study of
protein molecules with chain length N=48. To investigate the extent to which
protein topology is a robust determinant of the nucleation mechanism we compare
the nucleation scenario of a native-centric model with that of a sequence
specific model sharing the same native fold. To evaluate the impact of the
sequence's finner details in the nucleation mechanism we consider the folding
of two non- homologous sequences. We conclude that in a sequence-specific model
the folding nucleus is, to some extent, formed by the most stable contacts in
the protein and that the less stable linkages in the folding nucleus are solely
determined by the fold's topology. We have also found that independently of
protein sequence the folding nucleus performs the same `topological' function.
This unifying feature of the nucleation mechanism results from the residues
forming the folding nucleus being distributed along the protein chain in a
similar and well-defined manner that is determined by the fold's topological
features.Comment: 10 Figures. J. Physics: Condensed Matter (to appear
Morphological changes in Bombyx Mori silk gland and gut, in association with the feeding of iron oxide nanoparticles
The Bombyx mori silkworm is very important econom-
ically and is a model for several studies. The larval life of silkworms is
divided into five instars. The 5th instar is the longest, where the larvae
show maximum food consumption and growth. The silk is produced
in a paired gland composed of glandular epithelium and a lumen.
Food digestion occurs in the midgut, represented by a folded
columnar monolayered epithelium, which includes goblet cells and
stem cells in a basal lamina. We aimed to investigate the influence
of concentrations of iron oxide nanoparticles (IONPs) in food on
the silk gland and midgut morphology
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …