287 research outputs found

    A chain mechanism for flagellum growth.

    Get PDF
    Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip

    PPARgamma inhibits hepatocellular carcinoma metastases in vitro and in mice

    Get PDF
    Background: We have previously demonstrated that peroxisome proliferator-activated receptor (PPARγ) activation inhibits hepatocarcinogenesis. We aim to investigate the effect of PPARγ on hepatocellular carcinoma (HCC) metastatic potential and explore its underlying mechanisms. Methods: Human HCC cells (MHCC97L, BEL-7404) were infected with adenovirus-expressing PPARγ (Ad-PPARγ) or Ad-lacZ and treated with or without PPARγ agonist (rosiglitazone). The effects of PPARγ on cell migration and invasive activity were determined by wound healing assay and Matrigel invasive model in vitro, and in an orthotopic liver tumour metastatic model in mice.Results:Pronounced expression of PPARγ was demonstrated in HCC cells (MHCC97L, BEL-7404) treated with Ad-PPARγ, rosiglitazone or Ad-PPARγ plus rosiglitazone, compared with control (Ad-LacZ). Such induction markedly suppressed HCC cell migration. Moreover, the invasiveness of MHCC97L and BEL-7404 cells infected with Ad-PPARγ, or treated with rosiglitazone was significantly diminished up to 60%. Combination of Ad-PPARγ and rosiglitazone showed an additive effect. Activation of PPARγ by rosiglitazone significantly reduced the incidence and severity of lung metastasis in an orthotopic HCC mouse model. Key mechanisms underlying the effect of PPARγ in HCC include upregulation of cell adhesion genes, E-cadherin and SYK (spleen tyrosine kinase), extracellular matrix regulator tissue inhibitors of metalloproteinase (TIMP) 3, tumour suppressor gene retinoblastoma 1, and downregulation of pro-metastatic genes MMP9 (matrix metallopeptidase 9), MMP13, HPSE (heparanase), and Hepatocyte growth factor (HGF). Direct transcriptional regulation of TIMP3, MMP9, MMP13, and HPSE by PPARγ was shown by ChIP-PCR. Conclusion: Peroxisome proliferator-activated receptor-gamma exerts an inhibitory effect on the invasive and metastatic potential of HCC in vitro and in vivo, and is thus, a target for the prevention and treatment of HCC metastases. © 2012 Cancer Research UK All rights reserved.published_or_final_versio

    Signaling pathway networks mined from human pituitary adenoma proteomics data

    Get PDF
    Abstract Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins), comparative proteomic data (56 differentially expressed proteins), and nitroproteomic data (17 nitroproteins). There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a pituitary control related to gene expression and cellular development, and no canonical toxicity pathways were identified. Conclusions This pathway network analysis demonstrated that mitochondrial dysfunction, oxidative stress, cell-cycle dysregulation, and the MAPK-signaling abnormality are significantly associated with a pituitary adenoma. These pathway-network data provide new insights into the molecular mechanisms of human pituitary adenoma pathogenesis, and new clues for an in-depth investigation of pituitary adenoma and biomarker discovery.</p

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe
    corecore