348 research outputs found

    Model comparison and quantification of nitrous oxide emission and mitigation potential from maize and wheat fields at a global scale

    Get PDF
    This work was carried out by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with farmers and funded by the CGIAR research programs (CRPs) on Climate Change, Agriculture and Food Security (CCAFS). CCAFS' work is supported by CGIAR Fund Donors and through bilateral funding agreements. For details, please visit https://ccafs.cgiar.org/donors. The views expressed in this paper cannot be taken to reflect the official opinions of these organizations. The dataset associated with this manuscript will be available together with the supplementary materials of this manuscript.Peer reviewedPublisher PD

    Sink or source—The potential of coffee agroforestry systems to sequester atmospheric CO2 into soil organic carbon

    Get PDF
    Current carbon accounting methodologies often assume interactions between above-ground and below-ground carbon, without considering effects of land management. We used data from two long-term coffee agroforestry experiments in Costa Rica and Nicaragua to assess the effect on total soil organic carbon (SOC) stocks of (i) organic versus conventional management, (ii) higher versus moderate agronomic inputs, (iii) tree shade types. During the first nine years of coffee establishment total 0–40 cm depth SOC stocks decreased by 12.4% in Costa Rica and 0.13% in Nicaragua. Change in SOC differed consistently amongst soil layers: at 0–10 cm SOC stocks increased by 2.14 and 1.26 Mg C ha−1 in Costa Rica and Nicaragua respectively; however much greater reduction occurred at 20–40 cm (9.65 and 2.85 Mg C ha−1 respectively). Organic management caused a greater increase in 0–10 cm SOC but did not influence its reduction at depth. Effects of shade type were smaller, though heavily pruned legume shade trees produced a greater increase in 0–10 cm SOC than unpruned timber trees. No significant differences in SOC stocks were found between shaded and unshaded systems at any depth and SOC was poorly correlated with above-ground biomass stocks highlighting poor validity of “expansion factors” currently used to estimate SOC. SOC stock changes were significantly negatively correlated with initial SOC stock per plot, providing evidence that during establishment of these woody-plant-dominated agricultural systems SOC stocks tend to converge towards a new equilibrium as a function of the change in the quantity and distribution of organic inputs. Therefore it cannot be assumed that tree-based agricultural systems necessarily lead to increases in soil C stocks. While high inputs of organic fertiliser/tree pruning mulch increased surface-layer SOC stocks, this did not affect stocks in deeper soil, where decreases generally exceeded any gains in surface soil. Therefore site- and system-specific sampling is essential to draw meaningful conclusions for climate change mitigation strategies

    Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions

    Full text link
    [EN] Water is an essential resource for food production, as agriculture consumes close to 70% of the total freshwater, and its shortage is becoming critical in arid and semiarid areas of the world. Therefore, it is important to use water more efficiently. The objectives of this project are to determine the productive response and the irrigation water use efficiency of seedless watermelon to three irrigation management strategies over two growing seasons. This was done by applying 100, 75 and 50% of the irrigation water requirements (IWR) the first year, in the second year added six additional treatments, of which three treatments were regulated deficit irrigation with 75% IWR during the vegetative growth, fruit development and fruit ripening stages, and the other three treatments were with 50% IWR during the same stages. The exposure of watermelon plants to severe deficit irrigation resulted in a reduction in dry biomass, total and marketable yield, average fruit weight, fruit number and harvest index, and without improvement of marketable fruit quality. The fruit ripening was the less sensitive stage to water deficits. Relative water content and cell membrane stability index decreased as the water deficit increased. Irrigation water use efficiency decreased to a lesser extend during the fruit ripening stage than when water restriction were applied during different growth stages. If water is readily available, irrigating with 100% of water requirements is recommended, but in the case of water scarcity, applying water shortage during fruit ripening stage would be advisable.Abdelkhalik, A.; Pascual-Seva, N.; Nájera, I.; Giner, A.; Baixauli Soria, C.; Pascual España, B. (2019). Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions. Agricultural Water Management. 212:99-110. https://doi.org/10.1016/j.agwat.2018.08.0449911021

    A Soil Management Assessment Framework (SMAF) Evaluation of Brazilian Sugarcane Expansion on Soil Quality

    Get PDF
    The Soil Management Assessment Framework (SMAF) was developed to evaluate impacts of land use and management practices on soil quality (SQ), but its suitability for Brazilian tropical soils was unknown. We hypothesized that SMAF would be sensitive enough to detect SQ changes associated with sugarcane (Saccharum officinarum L.) expansion for ethanol production. Field studies were performed at three sites across the south-central region of Brazil, aiming to quantify the impacts of a land use change sequence (i.e., native vegetation–pasture–sugarcane) on SQ. Eight soil indicators were individually scored using SMAF curves developed primarily for North American soils and integrated into an overall Soil Quality Index (SQI) and its chemical, physical, and biological sectors. The SMAF scores were correlated with two other approaches used to assess SQ changes, soil organic C (SOC) stocks and Visual Evaluation of Soil Structure (VESS) scores. Our findings showed that the SMAF was an efficient tool for assessing land use change effects on the SQ of Brazilian tropical soils. The SMAF scoring curves developed using robust algorithms allowed proper assignment of scores for the soil chemical, physical, and biological indicators assessed. The SQI scores were significantly correlated with SOC stocks and VESS scores. Long-term transition from native vegetation to extensive pasture promoted significant decreases in soil chemical, physical, and biological indicators. Overall SQI suggested that soils under native vegetation were functioning at 87% of their potential capacity, while pasture soils were functioning at 70%. Conversions of pasture to sugarcane induced slight improvements in SQ, primarily because of improved soil fertility. Sugarcane soils are functioning at 74% of their potential capacity. Based on this study, management strategies were developed to improve SQ and the sustainability of sugarcane production in Brazil

    Element redistribution along hydraulic and redox gradients of low-centered polygons, Lena Delta, northern Siberia

    Get PDF
    Wetland soils affected by permafrost are extensive in subarctic and arctic tundra. However, this fact does not imply these soils have been sufficiently investigated. In particular, studies of element translocation processes are scarce. This study was conducted (i) to determine the relationship between water and redox regimes in wetland soils in the Siberian tundra, and (ii) to investigate their influence on the distribution of redox sensitive and associate elements (Mn, Fe, P). Major geomorphic units were chosen (microhigh, polygon rim and slope; microlow, polygon center) from two low-centered polygons in the Lena Delta. Within polygons, redox potential, permafrost, and water level were measured during summer in 1999 and 2000 and (related) compared with element distribution. Manganese, Fe, and P accumulations were preferentially observed in aerobic microhighs. Anaerobic conditions in the microlows lead to a mobilization of Mn, Fe, and P. The elements migrate via water and are immobilized at the microhigh, which acts as an oxidative barrier. The element pattern, indicating an upward flux via water along redox gradients, is explained by higher evapotranspiration from soils and vegetation of the microhighs (Typic Aquiturbel) compared with soils and vegetation of the microlows (Typic Historthel). However, in further research this upward transport should be validated using labeled elements

    The role of fishing material culture in communities’ sense of place as an added-value in management of coastal areas

    Get PDF
    Fishing communities in many places around the world are facing significant challenges due to new policies and environmental developments. While it is imperative to ensure sustainability of natural resources, many policies may overlook the contribution of fisheries to the sociocultural well-being of coastal communities. Authors address the problem of valuing the sociocultural benefits of fishing by exploring the role of fishing landscapes and traditional working waterfronts in maintaining sense of place in fishing communities. The paper explores how sense of place contributes to understanding the relationship between fishing and cultural-ecosystem services, drawing on case studies from four U.S. fishing communities in Brunswick County, North Carolina. Through semi-structured and in-depth interviews with fishing communities members, resident photography and sites visits, this paper outlines how fishing contributes to sense of place in terms of placeattachment and cultural-social memory. By understanding the relationship between fishers’ sense of place, and the physical environment in fishing communities in Brunswick County, the authors identify the complexity and interrelated elements that shape the relationship between fishermen and their cultural landscape. The paper suggests that realizing the value of fishing cultural landscape can encourage policies that promote preservation of fishing cultural heritage for the sociocultural benefit of communitie
    corecore