77 research outputs found

    Positive parity pentaquark towers in large Nc QCD

    Get PDF
    We construct the complete set of positive parity pentaquarks, which correspond in the quark model to {\bar s} q^{Nc+1} states with one unit of orbital angular momentum L=1. In the large Nc limit they fall into the K=1/2 and K=3/2 irreps (towers) of the contracted SU(4)c symmetry. We derive predictions for the mass spectrum and the axial couplings of these states at leading order in 1/Nc. The strong decay width of the lowest-lying positive parity exotic state is of order O(1/Nc), such that this state is narrow in the large Nc limit. Replacing the antiquark with a heavy antiquark {\bar Q} q^{Nc+1}, the two towers become degenerate, split only by O(1/mQ) hyperfine interactions. We obtain predictions for the strong decay widths of heavy pentaquarks to ordinary baryons and heavy H(*)_{\bar Q} mesons at leading order in 1/Nc and 1/mQ.Comment: 21 pages, 2 figures, 5 table

    A comprehensive search for the \Theta^+ pentaquark on the lattice

    Get PDF
    We study spin 1/2 isoscalar and isovector, even and odd parity candidates for the Θ+(1540)\Theta^+(1540) pentaquark particle using large scale lattice QCD simulations. Previous lattice works led to inconclusive results because so far it has not been possible to unambiguously identify the known scattering spectrum and tell whether additionally a genuine pentaquark state also exists. Here we carry out this analysis using several possible wave functions (operators). Linear combinations of those have a good chance of spanning both the scattering and pentaquark states. Our operator basis is the largest in the literature, and it also includes spatially non-trivial ones with unit orbital angular momentum. The cross correlator we compute is 14×\times14 with 60 non-vanishing elements. We can clearly distinguish the lowest scattering state(s) in both parity channels up to above the expected location of the pentaquark, but we find no trace of the latter. Based on that we conclude that there are most probably no pentaquark bound states at our quark masses, corresponding to mπm_\pi=400--630 MeV. However, we cannot rule out the existence of a pentaquark state at the physical quark mass corresponding to mπm_\pi=135 MeV or pentaquarks with a more exotic wave function.Comment: 18 pages, 2 figure

    Magnetic moment of the pentaquark Θ+(1540)\Theta^+(1540) with light-cone QCD sum rules

    Full text link
    In this article, we study the magnetic moment of the pentaquark state Θ+(1540) \Theta^+(1540) as diquark-diquark-antiquark ([ud][ud]sˉ[ud][ud]\bar{s}) state in the framework of the light-cone QCD sum rules approach. The numerical results indicate the magnetic moment of the pentaquark state Θ+(1540) \Theta^+(1540) is about μΘ+=−(0.49±0.06)μN\mu_{\Theta^+}=-(0.49\pm 0.06)\mu_N.Comment: 10 pages, 1 figure. The main contents of this article is included in hep-ph/0503007, this article will not be submitted to a journal for publicatio

    Quark-model study of few-baryon systems

    Get PDF
    We review the application of non-relativistic constituent quark models to study one, two and three non-strange baryon systems. We present results for the baryon spectra, potentials and observables of the NN, NΔ\Delta, ΔΔ\Delta\Delta and NN∗(1440)^*(1440) systems, and also for the binding energies of three non-strange baryon systems. We make emphasis on observable effects related to quark antisymmetry and its interplay with quark dynamics.Comment: 82 pages, 36 figures, 18 tables. Accepted for publication in Reports on Progress in Physic

    Polarization phenomena in open charm photoproduction processes

    Get PDF
    We analyze polarization effects in associative photoproduction of pseudoscalar (Dˉ\bar{D}) charmed mesons in exclusive processes γ+N→Yc+Dˉ\gamma+ N\to Y_c +\bar{D}, Yc=Λc+Y_c=\Lambda_c^+, Σc\Sigma_c. Circularly polarized photons induce nonzero polarization of the YcY_c-hyperon with xx- and zz-components (in the reaction plane) and non vanishing asymmetries Ax{\cal A}_x and Az{\cal A}_z for polarized nucleon target. These polarization observables can be predicted in model-independent way for exclusive Dˉ\bar{D}-production processes in collinear kinematics. The T-even YcY_c-polarization and asymmetries for non-collinear kinematics can be calculated in framework of an effective Lagrangian approach. The depolarization coefficients DabD_{ab}, characterizing the dependence of the YcY_c-polarization on the nucleon polarization are also calculated.Comment: 36 pages 13 figure

    Observation of narrow baryon resonance decaying into pKs0pK^0_s in pA-interactions at 70GeV/c70 GeV/c with SVD-2 setup

    Full text link
    SVD-2 experiment data have been analyzed to search for an exotic baryon state, the Θ+\Theta^+-baryon, in a pKs0pK^0_s decay mode at 70GeV/c70 GeV/c on IHEP accelerator. The reaction pA→pKs0+XpA \to pK^0_s+X with a limited multiplicity was used in the analysis. The pKs0pK^0_s invariant mass spectrum shows a resonant structure with M=1526±3(stat.)±3(syst.)MeV/c2M=1526\pm3(stat.)\pm 3(syst.) MeV/c^2 and Γ<24MeV/c2\Gamma < 24 MeV/c^2. The statistical significance of this peak was estimated to be of 5.6σ5.6 \sigma. The mass and width of the resonance is compatible with the recently reported Θ+\Theta^+- baryon with positive strangeness which was predicted as an exotic pentaquark (uuddsˉuudd\bar{s}) baryon state. The total cross section for Θ+\Theta^+ production in pN-interactions for XF≥0X_F\ge 0 was estimated to be (30÷120)μb(30\div120) \mu b and no essential deviation from A-dependence for inelastic events (∼A0.7)(\sim A^{0.7}) was found.Comment: 8 pages, 7 figures, To be submitted to Yadernaya Fizika. v3-v5 - Some references added, minor typos correcte

    Search for a strongly decaying neutral charmed pentaquark

    Full text link
    We present a search for a charmed pentaquark decaying strongly to D(∗)−pD^{(*)-}p. Finding no evidence for such a state, we set limits on the cross section times branching ratio relative to D∗−D^{*-} and D−D^- under particular assumptions about the production mechanism.Comment: To be published in Physics Letters

    Atmospheric Muon Flux at Sea Level, Underground, and Underwater

    Get PDF
    The vertical sea-level muon spectrum at energies above 1 GeV and the underground/underwater muon intensities at depths up to 18 km w.e. are calculated. The results are particularly collated with a great body of the ground-level, underground, and underwater muon data. In the hadron-cascade calculations, the growth with energy of inelastic cross sections and pion, kaon, and nucleon generation in pion-nucleus collisions are taken into account. For evaluating the prompt muon contribution to the muon flux, we apply two phenomenological approaches to the charm production problem: the recombination quark-parton model and the quark-gluon string model. To solve the muon transport equation at large depths of homogeneous medium, a semi-analytical method is used. The simple fitting formulas describing our numerical results are given. Our analysis shows that, at depths up to 6-7 km w. e., essentially all underground data on the muon intensity correlate with each other and with predicted depth-intensity relation for conventional muons to within 10%. However, the high-energy sea-level data as well as the data at large depths are contradictory and cannot be quantitatively decribed by a single nuclear-cascade model.Comment: 47 pages, REVTeX, 15 EPS figures included; recent experimental data and references added, typos correcte

    Possibility of determinig the parity of the pentaquark Θ+\Theta^+ from photoproduction near threshold

    Full text link
    We discuss the possibility of determining the parity of the Θ+\Theta^+ baryon from photoproduction γN→KΘ+\gamma N\to K\Theta^+ process near threshold. We utilize the conservation laws of parity and angular momentum for the analysis of angular distributions and spin observables near threshold. Since the discussion is in essence a partial wave analysis of the production mechanism the result should be less dependent on the model parameters. Our analysis shows that the angular distribution and photon polarization asymmetry for the process of neutron target are sensitive to the parity of the Θ+\Theta^+, but not for the case of proton target. In the case of proton target, the polarization asymmetries of target and recoiled Θ+\Theta^+ are preferred for parity determination.Comment: 23 pages, 13 figures, extended versio
    • …
    corecore