
ar
X

iv
:h

ep
-l

at
/0

50
30

12
v1

  1
1 

M
ar

 2
00

5

Preprint typeset in JHEP style - HYPER VERSION ITP-Budapest-619

WUB-05-02

A 
omprehensive sear
h for the Θ
+
pentaquark on

the latti
e

F. Csikor

a
, Z. Fodor

a,b
, S.D. Katz

a
, T.G. Ková
s

c
and B.C. Tóth

a

a
Institute for Theoreti
al Physi
s, Eötvös University, Hungary

b
Department of Physi
s, University of Wuppertal, Germany

c
Department of Theoreti
al Physi
s, University of Pé
s, Hungary

Abstra
t: We study spin 1/2 isos
alar and isove
tor, even and odd parity 
andidates

for the Θ+(1540) pentaquark parti
le using large s
ale latti
e QCD simulations. Previous

latti
e works led to in
on
lusive results be
ause so far it has not been possible to unam-

biguously identify the known s
attering spe
trum and tell whether additionally a genuine

pentaquark state also exists. Here we 
arry out this analysis using several possible wave

fun
tions (operators). Linear 
ombinations of those have a good 
han
e of spanning both

the s
attering and pentaquark states. Our operator basis is the largest in the literature,

and it also in
ludes spatially non-trivial ones with unit orbital angular momentum. The


ross 
orrelator we 
ompute is 14×14 with 60 non-vanishing elements. We 
an 
learly dis-

tinguish the lowest s
attering state(s) in both parity 
hannels up to above the expe
ted

lo
ation of the pentaquark, but we �nd no tra
e of the latter. Based on that we 
on
lude

that there are most probably no pentaquark bound states at our quark masses, 
orrespond-

ing to mπ=400�630 MeV. However, we 
annot rule out the existen
e of a pentaquark state

at the physi
al quark mass 
orresponding to mπ=135 MeV or pentaquarks with a more

exoti
 wave fun
tion.
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1. Introdu
tion

One of the mysteries of hadroni
 physi
s has been the failure to observe baryon states with

quantum numbers that 
annot be explained in terms of three quarks. However, for a long

time this was not 
onsidered to be a pra
ti
al problem due to the presumed large de
ay

width of these exoti
 baryons. The experimental signal of the Θ+(1540) parti
le [1℄, [2℄-

[12℄ 
hanged this situation dramati
ally. Indeed, the experimental upper bound so far on

the width of the Θ+
is around 10 MeV. This remarkably narrow width would also explain

why the Θ+
has not been seen before. Sin
e the Θ+

was observed to de
ay into a neutron

and a K+
, its strangeness has to be +1, the third 
omponent of its isospin is 0, and its

minimal quark 
ontent is dduus̄. From the la
k of a signal in the I3=1 
hannel the SAPHIR


ollaboration 
on
luded that the Θ+
is most probably an isospin singlet state [3℄. Its spin

and parity 
annot be pinned down based on 
urrently available experimental data.

Though the Θ+(1540) is seen experimentally in low energy ex
lusive pro
esses, there

are a number of (e+e− or high-energy proton 
ollision) experiments, where the Θ+(1540)

is not seen [13℄ � [20℄. The di�erent kinemati
al and experimental 
onditions between the

low energy ex
lusive experiments (with experimental eviden
e for Θ+
) and the in
lusive

experiments (usually non-observations) do not allow a dire
t 
omparison so that the null

results do not prove that the positive experiments are wrong [21℄. Nevertheless, it is fair to

say that the experimental situation is not perfe
tly 
lear at the moment. Sin
e there are only

single experimental indi
ations of other exoti
 pentaquarks (the possible Ξ−−(1860) state

reported by the NA49 experiment at CERN [22℄ and the 
harmed pentaquark identi�ed by

the H1 experiment at DESY [23℄) their existen
e is even more debated than that of the

Θ+(1540).
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Originally, the experimental sear
h for the Θ+(1540) was largely motivated by the 
hi-

ral soliton model [24℄ that predi
ted for the �rst time in 1997 a mass of 1530 MeV and a

width of less than 15 MeV for this exoti
 S=+1 baryon (for an earlier estimate of the mass in

the soliton approa
h see [25℄). The experimental eviden
e of the Θ+
pentaquark triggered

a �urry of theoreti
al spe
ulations about its possible stru
ture, yet unmeasured quantum

numbers and on the possibility of the existen
e of other exoti
 hadrons. A parti
ularly pop-

ular and su

essful approa
h is based on di�erent types of quark models [26�28℄. Attempts

have been made to understand the experimental �ndings by means of baryon-meson bound

states [30℄ as well as QCD sum rules [31℄.

These models substantially di�er in the properties they predi
t for the pentaquark state.

E.g. several models predi
t positive parity, while other approa
hes insist on negative parity.

Clearly, it is of utmost importan
e to study the Θ+(1540) without any model assumptions,

based on a �rst prin
iples non-perturbative approa
h, i.e. latti
e QCD.

The di�
ulty of the latti
e approa
h lies in the fa
t that the Θ+(1540) mass is very


lose to the NK s
attering threshold. In latti
e QCD one has to use a �nite box, implying

that the 
ontinuum of KN s
attering states turns into a sta
k of dis
rete energy levels with

the Θ+(1540) embedded somewhere among them. It is then not an easy task to reliably

distinguish the Θ+(1540) from these nearby s
attering states sin
e all the quantum numbers


oin
ide.

There are a few published works on the Θ+(1540) in latti
e QCD. Considering the

di�
ulties involved, it is not surprising that the results are not in 
omplete agreement.

Here we 
olle
ted the main features of these studies, for a more detailed dis
ussion see [39℄.

Ex
ept for one, all the latti
e studies report a signal in the negative parity 
hannel 
lose

to the expe
ted lo
ation of the pentaquark. Based on the simple fa
t that the lowest state

with opposite parity lies mu
h higher, Refs. [32, 33℄ tentatively identify this state with the

Θ+
. Others employ �nite volume analysis [36℄ and twisted boundary 
onditions [35℄ to

distinguish between a two-parti
le and a one-parti
le state and they 
on
lude that what

they see is a s
attering state. Ref. [35℄ on the other hand identi�es the �rst ex
ited state

with negative parity and from its dependen
e on the volume 
on
ludes that it is the Θ+

resonan
e. All these works are largely 
onsistent in the lowest masses they �nd in both

parity 
hannels, they only di�er in their interpretations.

The only result, whi
h is in
onsistent with the rest is that of [34℄, observing a state

in the positive parity 
hannel 
ompatible with the Θ+
and a mu
h higher state in the

negative parity 
hannel. We stress that none of the latti
e studies so far 
ould identify

the lowest expe
ted s
attering state in both parity 
hannels. This strongly suggests that

the wave fun
tions, all based on rotationally symmetri
 quark sour
es at the origin, do not

have su�
ient overlap with all the low lying states. Another latti
e study, Ref. [38℄, �nds

some eviden
e that a pentaquark potential based on the diquark-diquark-antiquark pi
ture

is energeti
ally more favourable than that of the KN pi
ture. All these investigations use

the quen
hed approximation, but with di�erent fermion formulations and pentaquark wave

fun
tions (operators).

A reliable 
on�rmation of the existen
e of the Θ+(1540) from latti
e studies is a
hieved

only if all the states up to above the expe
ted lo
ation of the Θ+(1540) have been identi�ed
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and the Θ+(1540) 
an be 
learly distinguished from the neighbouring s
attering states. It

is thus 
lear that a further more 
omprehensive study is required and this is our aim in the

present paper.

Here we use several possible wave fun
tions (operators) that have a good 
han
e of

spanning both the s
attering and pentaquark states. Our operator basis is the largest in

the literature, the 
ross 
orrelator we 
ompute is 14×14 with 60 non-vanishing elements.

In parti
ular we also in
lude displa
ed, rotationally non-symmetri
 spatial quark 
on�gu-

rations to allow non-zero orbital angular momentum as well as a better separation of the

s
attering states.

In the positive parity 
hannel the lowest state we 
an identify is 
ompatible with the

lowest expe
ted two-parti
le state and is already signi�
antly above the Θ+
. In the negative

parity 
hannel we 
an distinguish the two lowest states that both turn out to be 
ompatible

with the expe
ted s
attering states. At the box volumes we use the Θ+
is expe
ted to be

between the two lowest s
attering states, but we see no tra
e of it there. We also 
arried

out the analysis for a smaller volume and found that the volume dependen
e of the energies

is 
ompatible with all the identi�ed states being two-parti
le states.

In 
on
lusion, we identi�ed all the states around the expe
ted lo
ation of the Θ+
in both

parity 
hannels and they all turned out to be signi�
antly di�erent from the Θ+
. Sin
e our u

and d quarks were heavier than the physi
al quarks (
orresponding tomπ=400�630 MeV) we


annot rule out the possible appearan
e of a pentaquark state for lighter quarks. Although

not very likely, it is also possible that a pentaquark state exists with a wave fun
tion having

very small overlap with all our trial wave fun
tions.

In the present study we 
hose to work in the quen
hed approximation again, whi
h

is known to be quite su

essful in reprodu
ing mass ratios of stable hadrons [40℄ � [43℄.

Compared to our previous analysis we improved by three means. In addition to the 
ross


orrelator te
hnique and the �nite volume analysis we in
reased our statisti
s by a fa
tor

of 2�3.

2. Cross 
orrelators

In hadron spe
tros
opy one would like to identify states with given quantum numbers by


omputing the va
uum expe
tation value of the Eu
lidean 
orrelation fun
tion 〈0|O(t)Ō(0)|0〉

of some 
omposite hadroni
 operator O. The operator O is built out of quark 
reation and

annihilation operators. In physi
al terms the 
orrelator is the amplitude of the �pro
ess� of


reating a 
ompli
ated hadroni
 state des
ribed by O at time 0 and destroying it at time t.

After inserting a 
omplete set of eigenstates |i〉 of the full QCD Hamiltonian the 
or-

relation fun
tion 
an be written as

〈0|O(t)Ō(0)|0〉 =
∑

i

| 〈i|Ō(0)|0〉 |2 e

−(Ei−E0)t, (2.1)

where

O(t) = e

−Ht O(0) eHt
(2.2)

and Ei are the energy eigenvalues of the Hamiltonian.
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Note that sin
e we work in Eu
lidean spa
e-time (the real time 
oordinate t is repla
ed

with −it), the 
orrelators do not os
illate, they rather die out exponentially in imaginary

time. In parti
ular, after long enough time only the lowest state 
reated by O gives 
ontri-

bution to the 
orrelator. The energy eigenvalue 
orresponding to that state 
an be extra
ted

from an exponential �t to the large t behaviour of the 
orrelator.

In prin
iple higher states 
ould also be identi�ed by generalizing the pro
edure and

�tting the 
orrelator with a sum of exponentials. In pra
ti
e, however, that would require

extremely high pre
ision data, usually not available in latti
e simulations. A mu
h more

realisti
 solution 
an be based on the observation that if the operator O happened to have

negligible overlap with the ground state in the given se
tor, a single exponential �t would

yield the �rst ex
ited state. This, however, is very unlikely to happen by sheer lu
k, as it

would require �ne tuning.

It is exa
tly this �ne tuning that 
an be performed if instead of one operator O one


onsiders a linear 
ombination of the form

R(t) =
n
∑

i=1

viOi(t). (2.3)

The 
orrelator of R 
an be easily expressed in terms of the n× n 
orrelation matrix

Cij(t) = 〈Oi(t)Ōj(0)〉 (2.4)

as

R(t) = 〈R(t)R̄(0)〉 =
n
∑

i,j=1

viv̄jCij(t). (2.5)

Morningstar and Peardon used this 
ross 
orrelator to 
ompute glueball masses on the

latti
e [44℄. Their pro
edure was based on the e�e
tive mass de�ned for a general 
orrelator

as

m
e�

= −
1

∆t
ln

(

C(t+∆t)

C(t)

)

. (2.6)

Let us now 
onsider the e�e
tive mass obtained from R(t),

m(t) = −
1

∆t
ln

[

R(t+∆t)

R(t)

]

= −
1

∆t
ln

[

∑n
i,j=0 viv̄jCij(t+∆t)
∑n

i,j=0 viv̄jCij(t)

]

. (2.7)

This 
an be exploited to 
onstru
t linear 
ombinations that have optimal overlap with the

ground state or higher ex
ited states. If the 
orrelator 
ontained only n di�erent states,

the linear 
ombination with the lowest e�e
tive mass would yield exa
tly the ground state.

In pra
ti
e this is a good approximation starting already from moderate values of t, sin
e

higher states die out rapidly.

A simple 
omputation shows that the stationary points of the e�e
tive mass with

respe
t to the variables {vi}
n
i=1 are given by the solutions of the generalized eigenvalue

equation

n
∑

i=1

Cij(t+∆t)vj = λ
n
∑

i=1

Cij(t)vj . (2.8)
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Initially we only asked for the lowest e�e
tive mass, but this eigenvalue problem 
an

have many solutions. It is not hard to interpret them using the following geometri
 pi
ture.

Cij(t) and Cij(t + ∆t), being both Hermitian, 
an be 
onsidered to be the 
omponents

of two quadrati
 forms on the n-dimensional spa
e spanned by the vi's. Let us interpret

Cij(t) as an inner produ
t on this ve
tor spa
e. It 
an be seen from eq. (2.7) that the

e�e
tive mass does not depend on the normalization of the ve
tor {vi}, so we 
an restri
t

it to be of unit length (with respe
t to the inner produ
t just de�ned). It is now easy to

see that the stationary points of the e�e
tive mass 
orrespond to the prin
ipal axes of the

se
ond quadrati
 form, Cij(t+∆t). In the language of the generalized eigenvalue problem

this is equivalent to the statement that two quadrati
 forms 
an always be simultaneously

diagonalized in a ve
tor spa
e: there is a basis orthonormal with respe
t to one quadrati


form and pointing along the prin
ipal axes of the other one.

Assuming a generi
 
ase with no degenera
ies the stationary points will have 0,1,2...

unstable dire
tions and they yield the 
oe�
ients of the linear 
ombinations 
orresponding

to the ground state and the higher ex
ited states. Of 
ourse this statement again is exa
tly

true only if there are only n states in the 
orrelator. The importan
e of 
orre
tions 
oming

from higher states 
an be estimated by 
he
king how stable the whole pro
edure is with

respe
t to varying t and ∆t.

This gives a general method to determine the optimal linear 
ombinations of n operators

that have the best overlap with the lowest k (k ≤ n) states. The only disadvantage of this

pro
edure is that being based on e�e
tive masses, it always uses only two points of the


orrelators to extra
t the optimal linear 
ombinations. On the other hand, on
e the optimal

linear 
ombinations have been found the 
orresponding 
orrelators 
an be �tted using any

standard te
hnique.

3. Details of the simulation

3.1 Choi
e of operators

One of the most important parts of the whole analysis is the proper 
hoi
e of operators.

We need a large number of independent operators, whi
h span a large enough subspa
e


ontaining the s
attering states and a possible pentaquark state.

In order to have really independent operators, we used non-trivial wavefun
tions for the

quark �elds. The typi
al operators used in hadron spe
tros
opy 
ontain quarks at only one

latti
e point with some Gaussian smearing. These operators have automati
ally zero orbital

angular momentum and a spin eigenstate 
an be guaranteed by 
orre
tly 
hoosing the Dira
-

stru
ture of the operator. This, however, gives a very limited set of operators. Moreover,

some operators, e.g. the one proposed by Ja�e and Wil
zek [26℄ 
annot be implemented in

this way.

Therefore we de
ided to use operators, whi
h 
ontain quark �elds at di�erent latti
e

sites. In general the �ve-parti
le wave fun
tion 
ould be any fun
tion of the lo
ations of the

�ve quarks. However, sin
e the 
orrelation fun
tions are built up from quark propagators,

we have to restri
t ourselves to wave fun
tions, whi
h are produ
ts of the individual quark

� 5 �



wave fun
tions:

O(x1, x2, x3, x4, x5) = q1(x1)q2(x2)q3(x3)q4(x4)q5(x5) (3.1)

Here, for simpli
ity we omitted the 
olor and Dira
-stru
ture. These are the elementary

operators for whi
h the 
orrelators 
an be 
omputed by single Dira
-matrix inversions. A

general �ve-quark operator 
an be written as a linear 
ombination of su
h elementary

operators.

For the individual quark wave-fun
tions we use a simple Gaussian fun
tion 
entered at

some latti
e site:

qi(xi) = exp

(

−
(xi − xi0)

2

r2i

)

. (3.2)

It is easy to see that if not all xi0-s are the same then the operator will not have a

spheri
al symmetry and therefore it will 
reate a mixture of angular-momentum eigenstates.

A

ording to Appendix B we 
an proje
t out angular momentum 1/2 using the proje
tor

P (G1)
.

We had two sets of operators, one with spatially 
ompletely symmetri
 and one with

antisymmetri
 operators. Sin
e the 
ross-
orrelator of a symmetri
 and antisymmetri


operator vanishes we 
ould perform the runs separately for the two sets. It turned out that

the symmetri
/antisymmetri
 operators had a good overlap with negative/positive parity

states, respe
tively.

Let us simplify our notation further by allowing only quark wave-fun
tions that are


entered on points of the z axis only. Operators based on su
h wave-fun
tions have axial

symmetry and therefore the spin-proje
tion requires a minimal number of extra operators.

Let

qi(di, ri, xi) = exp

(

−
(xi − di · ẑ)

2

r2i

)

, (3.3)

where ẑ is the unit ve
tor along the z axis. We will usually omit the xi argument.

We used the following set of isos
alar operators:

O1 = ǫabc[uTa (0, 4)Cγ5db(0, 4)]{uc(0, 4)s̄e(0, 4)γ5de(0, 4) + (u↔ d)}

O2 = ǫabcǫadeǫbgh[uTd (0, 4)Cγ5de(0, 4)][u
T
g (0, 4)Cdh(0, 4)]Cs̄

T
c (0, 4)

O3 = P (G1)
[

ǫabc[uTa (0, 4)Cγ5db(0, 4)]{uc(0, 4)s̄e(Ns/2, 4)γ5de(Ns/2, 4) + (u↔ d)}
]

(3.4)

O4 = P (G1)
[

ǫabcǫadeǫbgh[uTd (1, 2)Cγ5de(1, 2)][u
T
g (−1, 2)Cdh(−1, 2)]Cs̄Tc (0, 4)

]

O5 = P (G1)
[

ǫabc[uTa (0, 4)Cγ5db(0, 4)]

× {uc(0, 4) [s̄e(Ns/4, 4)γ5de(Ns/4, 4) − s̄e(−Ns/4, 4)γ5de(−Ns/4, 4)] + (u↔ d)}] .

Here C is the 
harge 
onjugation operator and the 
olor indi
es are shown expli
itly.

The �rst operator is the one used in our previous work [32℄ with 
olor index 
ontra
tions


orresponding to an NK state. O2 was introdu
ed in [33℄. The third operator is a shifted

N −K s
attering operator with spin proje
tion. The relative displa
ement of the nu
leon
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and kaon is half of the spatial latti
e size Ns/2, so this operator is spatially symmetri
.

The last two operators are the antisymmetri
 ones. O4 is based on the proposal [26℄. The

two diquarks are shifted to ±1 from the origin. Finally, O5 is a shifted N − K operator

with distan
e Ns/4. It is �rst antisymmetrized, then proje
ted to a spin eigenstate. The

proje
tion of the last three operators requires the 
omputation of 3, 3 and 6 operators, re-

spe
tively. Therefore we have to 
ompute the 
orrelation matrix of 14 elementary operators

(ex
ept for the elements 
onne
ting operators with opposite spatial symmetry).

3.2 Simulation parameters and results

We used the standard Wilson gauge a
tion at β = 6.0 to generate our 
on�gurations. For

the measurements we used the Wilson fermion a
tion with four di�erent κu,d values for

the light quarks: 0.1550, 0.1555, 0.1558 and 0.1563. This spans a pion mass range of 400-

630 MeV. For the strange quark we used a 
onstant κs = 0.1544, whi
h gives the required

kaon mass in the 
hiral limit. The latti
e size was 243 × 60 and for the largest quark mass

we also performed simulations on a 203 × 60 latti
e to see the volume dependen
e of the

observed states.

Table 1 shows the statisti
s we 
olle
ted

size operators κu,d 
onfs

243 × 60 O1,O2,O3 0.1550 242

243 × 60 O1,O2,O3 0.1555 205

243 × 60 O1,O2,O3 0.1558 205

243 × 60 O1,O2,O3 0.1563 205

203 × 60 O1,O2,O3 0.1550 630

243 × 60 O4,O5 0.1550 250

243 × 60 O4,O5 0.1555 144

243 × 60 O4,O5 0.1558 144

243 × 60 O4,O5 0.1563 144

203 × 60 O4,O5 0.1550 234

Table 1: The 
olle
ted statisti
s for the various

simulation points.

in the various points. After performing the

spin and parity proje
tions, we used the di-

agonalization pro
edure des
ribed in the pre-

vious se
tion to separate the possible states

in both parity 
hannels. As mentioned ear-

lier the symmetri
 operators gave a good sig-

nal only in the negative parity 
hannel while

the antisymmetri
 operators had reasonable

overlap only with positive parity states. This


an be understood sin
e the parity trans-

formation in
ludes a spatial re�e
tion and

the nu
leon-kaon system has a negative in-

ner parity. Therefore we used only the op-

erators O1 − O3 to extra
t negative parity

states and operators O4 −O5 for positive parity.

We varied both t and ∆t required for the diagonalization over a range of 2 − 5 and

in
luded the systemati
 un
ertainties 
oming from this variation in the �nal errorbars. After

separating the states we had to extra
t the lowest masses from the individual 
orrelation

fun
tions. It turned out that for the ex
ited states neither a 
orrelated nor an un
orrelated

�t with a single exponential (
osh) was satisfa
tory sin
e in the asymptoti
 region where a

one exponential �t 
ould work the data were rather noisy. We used the following te
hnique

instead.

If one plots the e�e
tive mass logC(t)/C(t+ 1) as a fun
tion of t, it should show

a plateau at asymptoti
ally large t values1. It is easy to show that the e�e
tive mass

1

A
tually we used a slightly modi�ed �e�e
tive mass�, namely the solution of the equation cosh(m
e�

·

(t−Nt/2))/ cosh(m
e�

· (t−Nt/2+1)) = C(t)/C(t+1) to get a �at plateau even for t values 
lose to Nt/2.
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approa
hes its plateau exponentially:

m
e�

(t) = m+ a · exp(−bt) t→ ∞, (3.5)

where m is the lowest mass in the given 
hannel. One 
an �t the e�e
tive masses with

the above formula and use it to extra
t the lowest masses. In this way one also uses the

information stored in the points before the plateau even if the plateau itself is noisy. This

te
hnique turned out to be very stable and we 
ould start to �t the e�e
tive masses at

t = 2, 3. Fig. 1 illustrates the method for the �rst two states in the negative parity 
hannel

for κ = 0.1550.

Figure 1: The e�e
tive masses for the �rst two states in the negative parity 
hannel for κ = 0.1550

and the �tted exponentials.

In both parity 
hannels we extra
ted the two lowest masses (whi
h we denote by m0

and m1). It is straightforward to de�ne the ratio αi = mi/(mN +mK) whi
h 
ompares the

possible s
attering and pentaquark states to the nu
leon-kaon threshold. The experimental

value of α for the Θ+
parti
le is αΘ+ = 1.07.

The summary of our results in
luding also the pion, kaon and nu
leon masses is given in

Table 2. The zero momentum s
attering state is just at the threshold. The �rst s
attering

state with nonzero momentum is expe
ted at

E1 =
√

m2
K + 4π2/(aNs)2 +

√

m2
N + 4π2/(aNs)2. (3.6)

Its ratio to the threshold is 1.151, 1.166, 1.177, 1.202 for κ = 0.1550, 0.1555, 0.1558 and

0.1563, respe
tively for our larger volume. For the smaller volume (Ns = 20) at κ = 0.1550
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size parity κu,d amπ amK amN α0 α1

243 × 60 � 0.1550 0.296(1) 0.317(1) 0.642(6) 1.01(1) 1.16(5)

243 × 60 � 0.1555 0.259(1) 0.301(1) 0.613(5) 0.99(1) 1.16(5)

243 × 60 � 0.1558 0.234(1) 0.290(1) 0.592(6) 0.99(1) 1.14(8)

243 × 60 � 0.1563 0.185(1) 0.272(1) 0.545(7) 0.98(2) 1.28(13)

203 × 60 � 0.1550 0.295(1) 0.316(1) 0.647(7) 1.00(1) 1.24(8)

243 × 60 + 0.1550 0.295(1) 0.316(1) 0.636(6) 1.16(2) 1.45(16)

243 × 60 + 0.1555 0.258(2) 0.299(2) 0.615(14) 1.13(3) 1.39(15)

243 × 60 + 0.1558 0.233(2) 0.288(2) 0.595(12) 1.09(5) 1.39(17)

243 × 60 + 0.1563 0.184(3) 0.270(2) 0.552(10) 1.14(8) 1.31(32)

203 × 60 + 0.1550 0.295(1) 0.316(1) 0.647(6) 1.21(2) 1.48(12)

Table 2: The measured pion, kaon and nu
leon masses and the ratio of the �rst two �ve-quark

states in both parity 
hannels to the KN threshold.

this ratio is 1.211. We 
an see that in all 
ases the measured mass ratios are 
onsistent with

the s
attering states. The expe
ted and measured volume dependen
es of the �rst ex
ited

state for negative parity and the ground state for positive parity is shown in Fig. 2.

Figure 2: The volume dependen
e of the two lowest states in the two parity 
hannels (left panel:

negative parity; right panel: positive parity). The dashed lines indi
ate the expe
ted s
attering

states with 0 momentum and the �rst two non-vanishing momenta. The dotted line shows the

experimental value of the pentaquark state.

For the highest quark mass, where we had the largest statisti
s quark mass we also

performed the whole analysis for the isove
tor 
hannel. The extra
ted masses and their
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volume dependen
e turned out to be qualitatively similar to those in the isos
alar 
hannel.

4. Con
lusion

In this paper we studied spin 1/2 isos
alar and isove
tor, even and odd parity 
andidates

for the Θ+
pentaquark using large s
ale latti
e QCD simulations. The analysis needed

approximately 0.5 T�opyears of sustained 32 bit operations.

Before we summarize the results of the di�erent 
hannels one te
hni
al remark is in

order. The Θ+
pentaquark is expe
ted to be a few % above the NK threshold. Typi
al

latti
e sizes of a few fermis result in a dis
rete NK s
attering spe
trum, with order 10%

energy di�eren
e between the lowest lying states. Thus, we are fa
ed with two problems.

First of all we have to �nd the possible pentaquark signal and the nearby s
attering states.

Se
ondly we have to tell the di�eren
e between them. Finding several states 
ould be

done by multi-parameter �tting

2

or more e�e
tively by spanning a multidimensional wave

fun
tion basis and using a 
ross 
orrelator te
hnique. The most straightforward way to tell

the di�eren
e between a narrow resonan
e and a s
attering state is to use the fa
t that the

former has an energy with quite weak volume dependen
e, whereas the latter has a de�nite

volume dependen
e, de�ned by the momenta allowed in a �nite system.

Clearly, any statement on the existen
e/non-existen
e or on the quantum numbers of

the Θ+
pentaquark depends 
ru
ially on this sort of separation. None of the previous

latti
e investigations on the Θ+
pentaquark was able to 
arry out this analysis. The most

important goal of the present paper was to do it.

The individual results in the odd and even parity 
hannels 
an be summarized as

follows (based on the statisti
ally most signi�
ant, highest quark mass and assuming that

m+
Θ/(mN +mK) s
ales with the quark mass).

1. Odd parity. The two lowest lying states are separated. The lower one is identi�ed

as the lowest s
attering state with appropriate volume dependen
e (in this 
ase the p=0

s
attering means no volume dependen
e). This state is 6σ below the Θ+
state. The volume

dependen
e of the se
ond lowest state is 
onsistent with that of a s
attering state with

non-zero relative momentum. For our larger/smaller volumes this state is 1.8/1.3σ above

the Θ+
state. None of these two states 
ould be interpreted as the Θ+

pentaquark

3

.

2. Even parity. The two lowest lying states are identi�ed. The volumes are 
hosen

su
h that even the lowest lying s
attering state is above the expe
ted Θ+
pentaquark state.

The volume dependen
e of the lowest state suggests that it is a s
attering state. For both

volumes this state is 6σ above the Θ+
state. Sin
e the energy of the se
ond lowest state is

even larger, none of them 
ould be interpreted as the Θ+
pentaquark.

To summarize in both parity 
hannels we identi�ed all the nearby states both below and

above the expe
ted Θ+
state. Having done that no additional resonan
e state was found.

2

Note that the energies of the states are determined by the exponential de
ays of 
orrelation fun
tions;

extra
ting several de
ay rates, whi
h di�er just by a few %, from the sum of noisy de
ays is in pra
ti
e not

feasible.

3

The volume dependen
e and the larger operator basis of this work suggest, that the odd parity signal of

our previous analysis [32℄, whi
h was quite 
lose to the Θ+
pentaquark mass, was most probably a mixture

of the two lowest lying s
attering states.
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This is an indi
ation that in our wave fun
tion basis no Θ+
pentaquark exists (though it

might appear in an even larger, more exoti
 basis, with smaller dynami
al quark masses or

approa
hing the 
ontinuum limit).

A. Parity proje
tion

In this appendix we summarize how the energy of the lowest state 
an be extra
ted sepa-

rately in the two parity 
hannels. Although we 
onsider spin 1/2 baryon 
orrelators here,

our dis
ussion 
an be generalized to other states.

The basi
 obje
ts one 
an 
ompute on the latti
e are Eu
lidean 
orrelators of the form

〈Oα(x)Ōβ(0) 〉 
orresponding to the amplitude of the pro
ess of 
reating a state at time

zero with the operator Ōβ(0), evolving it to a later time x0 and annihilating it with Oα(x).

There are two 
ompli
ations when one wants to extra
t the lowest state in a given

parity 
hannel. Firstly, simple baryoni
 operators usually 
ouple to both parities, therefore

one has to proje
t out parity by hand. Se
ondly, the box has a �nite time extent T

with (anti)periodi
 boundary 
ondition. Therefore, a single sour
e at time zero is in fa
t

mathemati
ally equivalent to the sum of an in�nite number of identi
al sour
es lo
ated

at t = 0,±T,±2T.... Due to the exponential fall-o� of 
orrelations, only the two sour
es


losest to the sink, i.e. at t = 0, T give appre
iable 
ontributions to the in�nite sum. If we

assume, as we shall always, that 0 ≤ x0 < T then

∞
∑

n=−∞

〈Oα(~x, x0)Ōβ(~0, nT ) 〉 ≈ 〈Oα(~x, x0)Ōβ(~0, 0) 〉 + ε
b


〈Oα(~x, x0)Ōβ(~0, T ) 〉, (A.1)

where ε
b


is +1 for periodi
 and −1 for anti-periodi
 boundary 
ondition in the time

dire
tion. The �rst term on the r.h.s. represents parti
les propagating from time 0 to x0
while the se
ond term represents antiparti
les propagating from time x0 to T . Thus even

after proje
ting to a given parity 
hannel the 
orrelator has 
ontributions not only from

parti
les of that parity, but also from the antiparti
les of parti
les of the opposite parity.

Therefore, an additional �proje
tion� is needed to get rid of the latter.

Before starting to des
ribe in detail how the two proje
tions 
an be 
arried out let us

dis
uss the form of the �rst term on the r.h.s. of eq. (A.1). We shall assume that Oα is a

spin 1/2 baryon operator and α is its Dira
 index. Due to the transformation properties of

Oα, the most general form the 
orrelator 
an have is

〈Oα(x)Ōβ(0) 〉 =
[

f(x2)xµγ
µ + g(x2)1

]

αβ
, (A.2)

where f and g are s
alar fun
tions of the length of the four-ve
tor x and 1 is the 4× 4 unit

matrix. After proje
tion to the zero momentum se
tor this be
omes

Cαβ(x0) =

∫

d

3x 〈Oα(x)Ōβ(0) 〉 = [A(x0)γ0 +B(x0)1 ]αβ , (A.3)

where

A(x0) =

∫

d

3x f(x2)x0, B(x0) =

∫

d

3x g(x2). (A.4)
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The important point here is that upon integration over 3-spa
e the terms in the 
orrelator

proportional to the spa
elike γ matri
es vanished due to their antisymmetry. We also note

that from eq. (A.4) A(x0) and B(x0) are easily seen to be anti-symmetri
 and symmetri


respe
tively.

Parity proje
tion. Parity proje
tion of an arbitrary operator O 
an be performed by

P±O =
1

2

(

O ± POP−1
)

, (A.5)

where P is the parity transformation and P±O 
ouples to parity eigenstates of ± parity.

In parti
ular, on spin 1/2 fermioni
 operators parity a
ts as

POα(x0,x)P
−1 = η (γ0)αν Oν(x0,−x), (A.6)

where η = ±1 is the internal parity of O depending on the parity 
onvention we 
hoose for

the elementary �elds and on how O is 
onstru
ted from those. The analogous formula 
an

be easily obtained for Ōα.

When 
onstru
ting 
orrelators it is enough to proje
t to a given parity either at the sink

or at the sour
e. This by itself ensures that only states of the given parity are propagating

in the 
orrelator. Inserting the proje
tion into the 
orrelator of eq. (A.3) at the sink one

obtains e.g. for the positive parity 
orrelator

1

2
(1+ ηγ0) [A(x0)γ0 +B(x0)1 ] =

η

2
[A(x0) + ηB(x0)] 1 +

1

2
[A(x0) + ηB(x0)] γ0. (A.7)

The negative parity 
hannel 
an be 
onstru
ted analogously by repla
ing η with −η every-

where.

Noti
e that all the matrix elements of the parity proje
ted 
orrelator have the same

fun
tional dependen
e, 1/2(A ± ηB), on x0. The exponential �t to this fun
tion will yield

the lowest state in the given parity 
hannel. In pra
ti
e the simplest way to obtain the

parity proje
ted 
orrelator is to 
ompute two suitable elements of the 4 × 4 
orrelation

matrix Cαβ(x0) that yield A(x0) and B(x0) respe
tively. So far we pretended that the box

is in�nite in the time dire
tion and negle
ted the se
ond term on the r.h.s. of eq. (A.1).

�Parti
le� proje
tion: Now the full 
orrelator, in
luding the term that �
omes ba
k�

through the time boundary, the only obje
t that we 
an a
tually 
ompute in a �nite box,

has the form

C(x0) + ε
b


C(x0 − T ) = [A(x0)− ε
b


A(T − x0)] γ0 + [B(x0) + ε
b


B(T − x0)] 1, (A.8)

where we arranged the arguments of A and B to be non-negative using their (anti)-

symmetry.

Were we to use our pres
ription above for parity proje
tion, i.e. the �γ0 
omponent� of

the 
orrelator ±η× its �1 
omponent�, we would end up with the parity proje
ted 
orrelator

1

2
[A(x0) + ηB(x0)] +

ε
b


2
[−A(T − x0) +B(T − x0)] , (A.9)

whi
h, due to an extra minus sign, does not have the simple fun
tional form f(x0)+f(T−x0)

that 
ould be �tted with a 
osh. This extra sign, however, 
an be easily 
an
eled if we
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ompute the A and the B 
omponents (the one proportional to γ0 and 1, respe
tively in

eq. (A.3)) with opposite boundary 
onditions. In that 
ase the parity proje
ted 
orrelator

has the form

1

2
[A(x0) + ηB(x0)] +

1

2
[A(T − x0) + ηB(T − x0)] . (A.10)

If 1/2[A(x0)+ηB(x0)] is a sum of exponentials 
orresponding to the energies of the states in

the given 
hannel, (A.10) is a sum of 
osh's with the same exponents. This is the fun
tional

form we have to use for �tting when extra
ting masses.

B. Proje
tion to a spin eigenstate

In this appendix we outline how a spe
i�
 spin eigenstate 
an be proje
ted out from a given

latti
e hadron operator. After summarizing the relevant group theoreti
al prin
iples we

dis
uss how our spin 1/2 pentaquark operators were 
onstru
ted.

When dis
ussing spin on a hyper
ubi
 latti
e the �rst problem is that due to the absen
e

of full SO(3) rotational symmetry it is not straightforward to assign spin to a latti
e energy

eigenstate. States on the latti
e 
an be 
lassi�ed into irredu
ible representations of the 
ubi


group O or its double 
over

2O, not SO(3) and SU(2) as in the 
ontinuum.

With the ex
eption of the lowest four representations, when restri
ted to

2O, irre-

du
ible representations of SU(2) do not remain irredu
ible. The spin 0, 1/2, 1 and 3/2

SU(2) representations are the ex
eptions, these restri
ted to

2O are equivalent to the ir-

redu
ible representations A1, G1, T1 and H, respe
tively. Also any state belonging to an

irredu
ible representation of

2O has 
omponents belonging to several di�erent spin repre-

sentations of SU(2). For instan
e a state in G1 has 
omponents in spin 1/2, 7/2, 9/2...

SU(2) representations and H has 
omponents of spin 3/2, 5/2, 7/2....

This means e.g. that if on the latti
e we �nd the lowest energy state in the G1 repre-

sentation of

2O, we 
an identify that with a spin 1/2 state in the 
ontinuum, provided all

the higher spin states 
ontributing to G1, i.e. s = 7/2, 9/2... 
an be assumed to have mu
h

higher energy. In this sense, for pra
ti
al purposes, the lowest few representations of SU(2)

and

2O 
an be identi�ed as follows:

0 ↔ A1, 1/2 ↔ G1, 1 ↔ T1, 3/2 ↔ H. (B.1)

The task we have at hand is thus to 
onstru
t states belonging to spe
i�
 representations

of the 
ubi
 group

2O. This 
an be most easily done using the te
hnique of proje
tion

operators that we summarize here for 
ompleteness. The simple form of the method of

proje
tors we present here 
an be used only when ea
h irredu
ible representation o

urs

in the de
omposition at most on
e. Therefore it is essential to know ahead of time the

irredu
ible representations o

urring in a tensor produ
t and their multipli
ities. This 
an

be most easily found using group 
hara
ters. See e.g. [46℄ for expli
it formulae and 
hara
ter

tables of O and

2O.

LetG be a �nite group, D
(r)
ij (g) be the matrix elements of its irredu
ible representation r

of dimension dr. Let the transformations T (g) form an arbitrary (not ne
essarily irredu
ible)
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unitary representation of G. We would like to proje
t a spe
i�
 irredu
ible representation

r out of the 
arrier spa
e of the T (g)'s. Let us de�ne the transformations

P
(r)
ij =

ds
|G|

∑

g∈G

D
(r)⋆
ij (g) T (g), (B.2)

where |G| is the number of elements G has and

⋆
denotes 
omplex 
onjugation.

It is straightforward to show that if |ψ〉 is any ve
tor belonging to the 
arrier spa
e of

T (g)'s then for a �xed j the dr ve
tors

|φi〉 = P
(r)
ij |ψ〉, i = 1, ...dr (B.3)

either transform as basis ve
tors of the irredu
ible representation r or they are all zero. For

the proof see any standard text on group representations, e.g. Ref. [45℄. Equations (B.2)

and (B.3) 
an be exploited to proje
t out di�erent representations of

2O from a given state

on the latti
e and its rotated 
opies.

In parti
ular, we would like to 
onstru
t pentaquark states belonging to G1 that 
or-

responds to spin 1/2. Although more 
ompli
ated 
ases 
an also be 
onsidered, here we

restri
t ourselves to the one where the spin indi
es of all the quarks but one have been


ontra
ted to be s
alars and the total spin of the pentaquark arises by 
ombining the spin

1/2 (G1) of the remaining quark with the orbital angular momentum of all the 
onstituents.

Therefore we have to proje
t G1 out of G1 ⊗ s, where s is a representation of the 
ubi


group O (not

2O!), 
orresponding to the orbital part.

In pra
ti
e s depends on the spatial arrangement of quark sour
es and this 
an be

exploited to make things as simple as possible. Eq. (B.2) implies that, in general, proje
tion

to a spe
i�
 spin involves as many terms as the number of elements of the group

2O, i.e. 48.

The situation, however, is mu
h better if the proje
tion formula (B.3) is applied to a state,

with an orbital part having some degree of symmetry under 
ubi
 rotations. The simplest


ase is when the �ve quark sour
es all have 
omplete rotational symmetry, i.e. the orbital

part is trivially s = A1. Then all the rotated 
opies of the quark sour
es are identi
al, the

sum in eq. (B.2) 
an be expli
itly 
omputed and the proje
tion redu
es to proje
tion to

spin up or spin down. The de
omposition here is A1 ⊗G1 = G1. All the operators used in

latti
e pentaquark spe
tros
opy so far fall into this 
ategory.

To explore the possibility of non-zero orbital angular momentum we have to 
onsider

less symmetri
 quark sour
es. Another possibility is to put the antiquark at the origin

with a rotationally symmetri
 wave fun
tion, displa
e the two pairs of (ud) quarks along a


oordinate axis (say z) keeping the arrangement 
ylindri
ally symmetri
 with respe
t to the

z axis. Inspired by the Ja�e-Wil
zek diquark-diquark-antiquark pi
ture [26℄, in anti
ipation

of orbital angular momentum 1, we 
onstru
t this state to be antisymmetri
 with respe
t

to the inter
hange of the two displa
ed quark pairs. Let us 
all su
h a state | ± z〉. It is

easy to see that the rotated 
opies of this state span a three dimensional spa
e 
arrying the

representation T1 of O. A possible set of basis states is given by (ud) pairs displa
ed along

the three 
oordinate axes; | ± x〉, | ± y〉, | ± z〉. This arrangement 
orresponds to proje
ting

out the spin 1/2 (G1) 
omponent from the de
omposition

T1 ⊗G1 = G1 ⊕H. (B.4)
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Let us 
hoose |ψ〉 = |↑〉 ⊗ | ± z〉 and 
ompute P
(G1)
11 |ψ〉. The transformations T (g) appear-

ing in eq. (B.2) are dire
t produ
ts of G1 transformations a
ting on the quark spin and

transformations a
ting on the orbital part. Ea
h term in the sum and as a 
onsequen
e

the whole sum itself 
an be de
omposed into three terms proportional to | ± x〉, | ± y〉 and

| ± z〉. The G1 matri
es 
an be easily obtained by restri
ting the de�ning representation

of SU(2) to 2O and with the fa
tors D
(G1)⋆
ij (g) they 
an be summed independently for the

three terms resulting in

P
(G1)
11 [|↑〉 ⊗ | ± z〉] =

(

0 0

1 0

)

|↑〉 ⊗ | ± x〉+

(

0 0

i 0

)

|↑〉 ⊗ | ± y〉+

(

1 0

0 0

)

|↑〉 ⊗ | ± z〉

= |↓〉 ⊗ | ± x〉+ i|↓〉 ⊗ | ± y〉+ |↑〉 ⊗ | ± z〉. (B.5)

In a similar fashion we obtain the other (spin down) basis element of the G1 proje
tion;

P
(G1)
21 [|↑〉 ⊗ | ± z〉] = |↑〉 ⊗ | ± x〉 − i|↑〉 ⊗ | ± y〉 − |↓〉 ⊗ | ± z〉. (B.6)

Note that, up to some numeri
al fa
tors 
oming from the normalization of spheri
al har-

moni
s, these expressions are identi
al to the spin 1/2 part of the SU(2) Clebs
h-Gordan

de
omposition 1 ⊗ 1/2 = 1/2 ⊕ 3/2. We 
ould also 
onstru
t spin 1/2 from similar, but

symmetri
 orbital states for the quarks displa
ed to x, y, z = −d. This would 
orrespond

to A1 ⊗G1 = G1 or 0⊗ 1/2 = 1/2 for SU(2).

Building these states requires seven quark sour
es; an antiquark at the origin and six

quark sour
es, two along ea
h 
oordinate axis (we use the same mass and sour
e for the u and

d quarks). Eq. (B.4) shows that keeping the same spatial arrangement the representation

H 
orresponding to spin 3/2 
ould also be proje
ted out. However, we have not explored

this possibility here. For that we would have had to repla
e the matrix elements D
(G1)⋆
ij (g)

in eq. (B.2) with those of H.

Besides the diquark-diquark-antiquark wave fun
tion we also wanted to study triquark

quark-antiquark states. The simplest non-trivial way to do that is to displa
e the quark-

antiquark pair along a 
oordinate axis, say +z. Let us 
all the orbital part of this state

| + z〉. Its rotated 
opies span the six dimensional spa
e with a possible basis formed by

|+x〉, |−x〉, |+y〉, |−y〉, |+z〉, |−z〉. This spa
e, however, 
an be split into an antisymmetri


part spanned by 
ombinations of the form |+ x〉 − | − x〉, ... and a symmetri
 one spanned

by |+ x〉+ | − x〉, et
. The representation of O on the antisymmetri
 part is T1 in exa
tly

the same way as in the diquark-diquark 
ase, resulting again in the spin proje
ted state

P
(G1)
11 [|↑〉 ⊗ (|+ z〉 − | − z〉)] =

|↓〉 ⊗ (|+ x〉 − | − x〉) + i|↓〉 ⊗ (|+ y〉 − | − y〉) + |↑〉 ⊗ (|+ z〉 − | − z〉). (B.7)

The three dimensional symmetri
 part of the orbital spa
e is redu
ible to A1⊕E. Thus

we 
an also produ
e spin 1/2 trivially from the symmetri
 part by A1 ⊗G1 = G1,

P
(G1)
11 [|↑〉 ⊗ (|+ z〉+ | − z〉)] =

|↑〉 ⊗ [|+ x〉+ | − x〉+ |+ y〉+ | − y〉+ |+ z〉+ | − z〉] . (B.8)
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